80€608YTLT

21 thes / tei00t0t 89522001 taver / stseun seootsse stssuxt naa I[NNI

Mapping The Spatio-Temporal Dynamics of Drought in Northeast Thailand

PHONGPHAT JAPHICHOM

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR MASTER DEGREE OF SCIENCE
IN GEOINFORMATICS
FACULTY OF GEOINFORMATICS
BURAPHA UNIVERSITY
2025
COPYRIGHT OF BURAPHA UNIVERSITY

65910037_1714809308



80€608YTLT

21 thes / tei00t0t 89522001 taver / stseun seootsse stssuxt naa I[NNI

a J o { v A { A [ @ =
mimmwmmgmuwuﬁwmmmﬁuﬂuazna1611mﬂﬂuﬁ’qGl,umﬂﬁmu@aﬂmmmﬁaeum

szmalne

Jd o J 1 a
WIANWNUY TN

a a g I [ X [ a o a
')TlEJ'IHWH‘E“T!L‘]JH’LT')UWﬁ\'l"ll@\1ﬂ'liﬁﬂ‘]&lW]'lll’i’iﬁﬂ’q@]i?ﬂﬁﬂﬁ?ﬁ@i‘hﬂ'lUmc'lﬂﬁ
a a 4
VNI IRUATAUUNAFTNT

a J a [
AUSHUANTTUNAMTAT NHIINYIQYYITN
2568

a a f£g a v
amamgﬂummwnmmﬂij



80€608YTLT

21 thes / tei00t0t 89522001 taver / stseun seootsse stssuxt naa I[NNI

Mapping The Spatio-Temporal Dynamics of Drought in Northeast Thailand

PHONGPHAT JAPHICHOM

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR MASTER DEGREE OF SCIENCE
IN GEOINFORMATICS
FACULTY OF GEOINFORMATICS
BURAPHA UNIVERSITY
2025
COPYRIGHT OF BURAPHA UNIVERSITY



The Thesis of Phongphat Japhichom has been approved by the examining
committee to be partial fulfillment of the requirements for the Master Degree of
Science in Geoinformatics of Burapha University

Advisory Committee Examining Committee

Principal advisor

examiner
(Professor Dr. Zhenfeng Shao) (Professor Dr. Wolfgang Kainz)
__________ Z}‘@V*fe'gj}w Member
Co-advisor (Professor Dr-"Zhenfeng Shao)

T . @/.Z—_/ Member

(Assistant Professor Dr. Phattraporn
Soytong)

Social Sciences

(Associzﬁe Prqfessor Dr. Suchada Pongkittiwiboon)
_________ 0.1aren, Q033

This Thesis has been approved by Graduate School Burapha University to
be partial fulfillment of the requirements for the Master Degree of Science in
Geoinformatics of Burapha University

Mt
aw ) Avsifin- Dean of Graduate School



80€608YTLT

21 thes / tei00t0t 89522001 taver / stseun seootsse stssuxt naa I[NNI

65910037: MAJOR: GEOINFORMATICS; M.Sc. (GEOINFORMATICS)
KEYWORDS: drought, Machine learning, Random Forest (RF), Remote sensing

PHONGPHAT JAPHICHOM : MAPPING THE SPATIO-TEMPORAL
DYNAMICS OF DROUGHT IN NORTHEAST THAILAND. ADVISORY
COMMITTEE: ZHENFENG SHAO, Ph.D. PHATTRAPORN SOYTONG, Ph.D.
2025.

Drought, a globally significant natural disaster, imposes considerable
economic and environmental impacts, severely impacting agriculture and socio-
economic systems annually. The frequency of global drought occurrences can be
attributed to the impacts of climate change and human activities. This study aims to
investigate the spatiotemporal dynamics of drought in Northeast Thailand by
integrating remote sensing (RS) and ground observations with machine learning
models.

This study specifically focused on northeast Thailand. This area is situated
within the tropical zone, characterized by mainly sandy soil that has a limited capacity
to retain water. Therefore, effective water resource management and drought
monitoring efforts are needed in northeast Thailand.

The main contents of this thesis include:

1) Investigation of spatio-temporal drought patterns (shorth term and long
term) of the study area from 2014 to 2023 using ML modeling from Landsat 8
satellite and ground observation data.

2) Performance comparison of machine learning (ML) models for
monitoring drought in Northeast Thailand.

3) Mapping spatial distribution of drought events in the Northeast of
Thailand from 2014 to 2023.

This study leverages the fusion of RS and ground data to enhance drought
monitoring. Ground indicators offer precision but have limited coverage, while RS
indices cover larger areas with less accuracy. ML algorithms were used to combine
these data sources, improving spatial resolution and accuracy. The study used five RS
parameters such as The Vegetation Condition Index (VCI), The Enhanced Vegetation
Index (EVI), The Temperature Condition Index (TCI), Topography, Precipitation,
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combined with ground data as The Standardized Precipitation Evapotranspiration
Index (SPEI). ML techniques, including XGBoost, Random Forest, and Extra Trees,
assessed the relationship between variables. Additionally, cross-validation techniques
were utilized to validate the model performance. The optimal model was used to
generate a spatial distribution of drought, contributing to more effective drought
management strategies, and enhancing drought dynamics in the region.

The results demonstrate that the Extra Trees model is outperform for
accurate drought index prediction. For short-term, the results show an R? ranging
from 65.26% to 94.28%, an RMSE between 1.58% to 33.28%, and an MAE ranging
from 0.09% to 18.55%. Similarly, for long-term, the results show an R? ranging from
78.73% to 94.8%, an RMSE between 4.55% and 31.93%, and an MAE ranging from
0.45% to 18.14%. In particular, the variables contributing to model accuracy include
precipitation (27%-67%), topography (19%-37%), and land surface temperature (6%-
21%). The feature importance values of these variables enhance the model
performance. The study examines both short-term and long-term precipitation patterns
using the Standardized Precipitation Evapotranspiration Index (SPEI) to assess
drought conditions. Short-term analysis identified significant drought occurrences in
June 2015 and April 2016, with recurrent drought periods observed in late 2018 and
2019, as well as the beginning of 2020 and 2021. These findings underscore the cyclic
nature of decreased precipitation and the associated risk of water scarcity within
shorter time frames. Moreover, long-term precipitation trends analyzed through SPEI
indicated sustained negative values from mid-2015 to 2016, indicating the onset of
drought conditions. Particularly noteworthy was the persistent negativity of SPEI
values from mid-2018 to 2020, indicating an extended drought period spanning
multiple months. indicating the severity and duration of the drought.

The main initiatives of the thesis are as follows:

1) Developed method that fuses the drought index using remote sensing
(RS) data from the Landsat 8 satellite and ground observations. This provides insights
into drought-related environmental parameters and precise meteorological
measurements.

2) Compared the performance of three ML models to identify the most
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effective method for drought monitoring in the study area.

3) Explored spatiotemporal trends in drought distribution to inform water
management and mitigation strategies.

In conclusion, the study provides a framework for strategic planning in
drought management by integrating RS and ground observation data. Future work
could explore deep learning or neural networks to enhance drought monitoring and

understanding of regional environmental implications.
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ABSTRACT

Drought, a globally significant natural disaster, imposes considerable economic and
environmental impacts, severely impacting agriculture and socio-economic systems
annually. The frequency of global drought occurrences can be attributed to the
impacts of climate change and human activities. This study aims to investigate the
spatiotemporal dynamics of drought in Northeast Thailand by integrating remote

sensing (RS) and ground observations with machine learning models.

This study specifically focused on northeast Thailand. This area is situated within the
tropical zone, characterized by mainly sandy soil that has a limited capacity to retain
water. Therefore, effective water resource management and drought monitoring

efforts are needed in northeast Thailand.
The main contents of this thesis include:

1) Investigation of spatio-temporal drought patterns (shorth term and long term) of
the study area from 2014 to 2023 using ML modeling from Landsat 8 satellite
and ground observation data.

2) Performance comparison of machine learning (ML) models for monitoring
drought in Northeast Thailand.

3) Mapping spatial distribution of drought events in the Northeast of Thailand from
2014 to 2023.

This study leverages the fusion of RS and ground data to enhance drought monitoring.
Ground indicators offer precision but have limited coverage, while RS indices cover
larger areas with less accuracy. ML algorithms were used to combine these data
sources, improving spatial resolution and accuracy. The study used five RS
parameters such as The Vegetation Condition Index (VCI), The Enhanced Vegetation
Index (EVI), The Temperature Condition Index (TCI), Topography, Precipitation,
combined with ground data as The Standardized Precipitation Evapotranspiration
Index (SPEI). ML techniques, including XGBoost, Random Forest, and Extra Trees,
assessed the relationship between variables. Additionally, cross-validation techniques

were utilized to validate the model performance. The optimal model was used to
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generate a spatial distribution of drought, contributing to more effective drought

management strategies, and enhancing drought dynamics in the region.

The results demonstrate that the Extra Trees model is outperform for accurate drought
index prediction. For short-term, the results show an R? ranging from 65.26% to
94.28%, an RMSE between 1.58% to 33.28%, and an MAE ranging from 0.09% to
18.55%. Similarly, for long-term, the results show an R? ranging from 78.73% to
94.8%, an RMSE between 4.55% and 31.93%, and an MAE ranging from 0.45% to
18.14%. In particular, the variables contributing to model accuracy include
precipitation (27%-67%), topography (19%-37%), and land surface temperature (6%-
21%). The feature importance values of these variables enhance the model
performance. The study examines both short-term and long-term precipitation patterns
using the Standardized Precipitation Evapotranspiration Index (SPEI) to assess
drought conditions. Short-term analysis identified significant drought occurrences in
June 2015 and April 2016, with recurrent drought periods observed in late 2018 and
2019, as well as the beginning of 2020 and 2021. These findings underscore the cyclic
nature of decreased precipitation and the associated risk of water scarcity within
shorter time frames. Moreover, long-term precipitation trends analyzed through SPEI
indicated sustained negative values from mid-2015 to 2016, indicating the onset of
drought conditions. Particularly noteworthy was the persistent negativity of SPEI
values from mid-2018 to 2020, indicating an extended drought period spanning

multiple months. indicating the severity and duration of the drought.
The main initiatives of the thesis are as follows:

1) Developed method that fuses the drought index using remote sensing (RS) data
from the Landsat 8 satellite and ground observations. This provides insights into
drought-related environmental parameters and precise meteorological
measurements.

2) Compared the performance of three ML models to identify the most effective
method for drought monitoring in the study area.

3) Explored spatiotemporal trends in drought distribution to inform water

management and mitigation strategies.
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In conclusion, the study provides a framework for strategic planning in drought
management by integrating RS and ground observation data. Future work could
explore deep learning or neural networks to enhance drought monitoring and

understanding of regional environmental implications.

Keywords: drought; remote sensing data; machine learning; Data fusion; XGBoost;
Random Forest; Extra trees;
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CHAPTER 1 INTRODUCTION

1.1 Background

Drought being a significant global natural calamity, incurs substantial costs and
inflicts extensive damage on agriculture the environment and the socio-economic
fabric annually (Bahta & Myeki, 2022). The monitoring and forecast of drought can
assist policymakers in their response to drought situations (Fu et al., 2022). The
occurrence of drought has become more frequent on a global scale due to the
combined impacts of climate change and human activity. Typically, droughts occur
both in a sequential and concurrent manner (X. Li, Jia, & Wang, 2023). The main
factors contributing to drought include uneven and insufficient precipitation, along
with insufficient rainfall distribution in specific areas (Carrillo et al., 2023). the

primary impact of drought in Thailand is predominantly on the agricultural sector

(Marks, 2011).

Thailand located in Asia is very susceptible to fluctuations and shifts in climatic
patterns (Sedtha, Pramanik, Szabo, Wilson, & Park, 2023; Shrestha, Chaweewan, &
Arunyawat, 2017), as well as extreme weather events such as droughts and floods.
The region of Northeast Thailand is situated within the tropical zone, characterized by
predominantly sandy soil that has a limited capacity to retain water (Fujii et al., 2017;
Suzuki, Noble, Ruaysoongnern, & Chinabut, 2007). The frequency and severity of
droughts have increased, causing significant damage to the agricultural and economic
sectors, resulting in reduced crop yields and hardships for farmers (Arpakorn & Chen,
2021; Suwanlee, Homtong, & Som-ard, 2023). The northeast of Thailand has 5
provinces, which cover an area of about 63,554 square kilometers, or one-third of the
whole country. On the Korat plateau (Saruda, Jinda, & Apiwat, 2021), droughts
usually occur when there is a lack of rain for a long period of time, especially in the
northeastern region, when there will be a decrease in the amount of rain (Saruda et al.,
2021). As a result, the amount of water stored in reservoirs and dams is much less

than before. This causes agricultural areas to lack water.

This research uses machine learning XGBoost (XGB), Random Forest (RF) and Extra

Trees Regressor (ETR) to integrate remote sensing and ground observation data from
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the Thai Meteorological Department to calculate drought indices. The study focuses
on leveraging Landsat 8 satellite data from 2014 to 2023 to analyze drought
conditions using the Google Earth Engine and scikit-learn and analyzing the spectral
indices The Vegetation Condition Index (VCI), The Enhanced Vegetation Index, The
Temperature Condition Index (TCI), A Digital Elevation Model (DEM), Climate
Hazards Group InfraRed Precipitation (CHIPRS) and The Standardized Precipitation
Evapotranspiration Index (SPEI) and using accuracy and the R2, RMSE and MAE for
the assessment performance of machine learning models (XGB, RF, ETR) and

drought mapping in the northeast region of Thailand.

1.2 Scientific Questions

e What are the spatiotemporal patterns of drought occurrences in the Northeast
region of Thailand from 2014 to 2023, as observed through Landsat 8 satellite
data?

e How does the performance of machine learning models, specifically XGBoost
(XGB), Random Forest (RF), and Extra Trees (ETR), compare in accurately
calculating drought monitoring in Northeast Thailand?

e What is the spatial distribution of drought events in the Northeast of Thailand
from 2014 to 2023?

1.3 Objectives

e To analyze and investigate the spatio-temporal patterns of drought occurrences in
the Northeast region of Thailand from 2014 to 2023 using Landsat 8 satellite
data.

e To assess and compare the performance of machine learning models between
specifically XGBoost (XGB), Random Forest (RF), and Extra Trees (ETR) for
the accurate calculation of drought monitoring in Northeast Thailand.

e To map the spatial distribution of drought events in the Northeast of Thailand
from 2014 to 2023.

1.4 Structure of Thesis
This research aims to analyze drought within the Northeast of Thailand for the period
from 2014 to 2023 using Landsat 8 and ground station data for The Vegetation
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Condition Index (VCI), The Enhanced Vegetation Index, The Temperature Condition
Index(TCI), A Digital Elevation Model (DEM), Climate Hazards Group InfraRed
Precipitation (CHIPRS) analysis in Python and The Standardized Precipitation
Evapotranspiration Index (SPEI) analysis in R Studio for training and validation.
using machine learning models, XGBoost (XGB), Random Forest (RF), and Extra
Trees (ETR) to find the best model to assess and compare the performance of the
model by R?, RMSE, and MAE within the Northeast region of Thailand. The scope of
the study is the entire Northeast of Thailand, which is characterized by predominantly
sandy soil with limited water retention capacity (Fujii et al., 2017; Suzuki et al.,

2007).

Thesis Structure
Chapter 1 Introduction
1.1 Background 1.3 Objectives
1.2 Research questions 1.4 Structure of Thesis

Chapter 2 Literature Review

2.5 The Standardized Precipitation

w s =
% SRR L Evapotranspiration Index
=
§ 2.2 Geoinformatics Technology 2.6 Related works
<
= o .
§ 2 I buoy skt indics 25T Mfichme Learning Models
s Algorithms
@
=
= 2.4 Topography 2.8 Summary of this chapter
Chapter 3 Materials and Methods
2 3.1 General Background of 3 & Predictive Model
= Study Area
=
% 3.2 Workflow of Research 3.6 Accuracy Assessment
>
= : 2 T
= 3.3 Data Collections 3.7 Mapping the Spatial Distribution
= Drought
w
D
a 3.4 Preprocessing Data 3.8 Summary of this chapter
Chapter 4 Results and Validation
. 4.1 Analysis of 4.3 Mapping the Spatial Distribution
2 Spatio-Temporal of drought Drought
g 4.2 Assessing and Comparing 4.4 Summary of Experiment and
the Performance of ML Result
Chapter 5 Conclusion and Future work
5.1 Conclusion 5.2 Future work and Suggestions

Figure 1 Diagram Framework in This Study



80€608YTLT

21 thes / tei00t0t 89522001 taver / stseun seootsse stssuxt naa I[NNI

CHAPTER 2 LITERATURE REVIEW
2.1 Background of This Study
2.1.1 The Seasons of Thailand

Thailand generally can be divided into 3 seasons as follows (Thai Meteorological
Department) Summer season starts around the middle of February until the middle of
May, this is when things will change from the northeast monsoon. It is a storm in the
southwest and is how far away the North Pole is from the sun. As a result, the weather
is usually hot and stuffy, especially in April. These days, it's mostly hot and dry, but
sometimes a cold air mass from China will come through. spread down to cover the

top of Thailand.

The rainy season starts around the middle of May until the end of June as the
southwest monsoon blows over Thailand, a low-pressure trough will cross the
country, causing a lot of rain. It will then move through the southern China area.
Thailand has been getting less rain for a while, and it's called rain. This could last for
a week or two, a year, or even longer, and it could get worse. and it didn't rain for

months.

Winter season starts around mid-October to mid-February. When the northeast
monsoon It has blanketed Thailand. In mid-October for 1-2 weeks, the season changes
from the rainy season to the winter season. The weather is unstable. It may start to get
cold. Or there may still be thunderstorms. Especially in the lower central region. and
the eastern region down there will stop raining and the weather will begin to cool later

than the northern and northeastern regions (Thai Meteorological Department).

2.1.2 Temperature of Thailand
Thailand is in the tropics. The general weather conditions are therefore hot and humid
most of the year. The average year-round temperature in Thailand is approximately 27
°C. However, temperatures vary in each area and season. The area is deep inland from
the central region. The upper eastern region up to the northern region will have very
different temperatures between summer and winter and between day and night in
summer, the highest temperature is in the afternoon. It usually reaches nearly 40 °C or
more from March to May. Especially April will be the hottest month of the year. In
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winter, the lowest temperature in the early morning drops to a range of cold to very
cold. Especially December to January is the coldest period of the year. During this
period, temperatures can drop below freezing in the northern region. and the
northeastern region, areas that are mountain ranges or high mountain peaks for areas
next to the sea, including the lower eastern region. and the southern region,
temperature variations across days and seasons are less. The summers are not as hot,
and the winters are not as cold as in areas deeper inland (Thai Meteorological

Department).

2.1.3 Rainfall in Thailand
Many Thailand has good rainfall. Most areas receive 1,200-1,600 millimeters of
rainfall per year. The average annual total rainfall throughout the country is
approximately 1,587.7 millimeters. The amount of rainfall in each area varies
according to topographical features. In addition to seasonal variations Upper Thailand
is normally dry and has little rain in winter. When entering summer, the amount of
rain It will increase somewhat along with thunderstorms. And when the rainy season

enters, the amount of rain will greatly increase.

The highest amount of rain will occur in August or September. Areas with a lot of
rain Most are in front of the mountain range. or the side receiving the southwest
monsoon winds, including areas on the western side of the country and the eastern
region. Most of the areas with little rain are behind the mountains. Including the
central areas of the northern and central regions. and the western area of the
northeastern region for the southern region, there is a lot of rain throughout the year

except during the summer.

Area in the southern west coast which is the side receiving the southwest monsoon
winds There will be more rainfall than the southern region on the eastern coast during
the rainy season. With the highest amount of rain in September. During the winter in
the southern and eastern areas which is the side receiving the northeast monsoon
winds There will be more rainfall than the southern west coast. With the highest

amount of rain in November (Thai Meteorological Department).
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2.1.4 Drought in Thailand
In Current global climate change It causes the rainy season to become shorter, which
means that the dry season will be longer. as a result, the amount of water in dams and
reservoirs throughout the country is insufficient for consumption. especially in
agricultural areas in addition, the prosperity of the community Economic expansion
such as the industrial sector Service business sector and the number of the population
has continued to increase at the same time as a result, the demand for water use in
various activities in every sector has increased. Therefore, it is one of the factors that

cause the problem of water shortage.

Thailand has drought problems quite frequently. Most droughts in Thailand are
caused by abnormally long periods of rain during the rainy season. or caused by
natural phenomena such as El Nifio. Almost every region in Thailand has experienced
drought problems. Droughts have occurred since the past until the present. The most
recent drought in Thailand was of 2019 - 2020, which may have been quite severe.
Due to the amount of demand for water increasing every day, but the lack of rain and
El Nifio, there is very little water in various reservoirs and dams within Thailand.

Droughts in Thailand mostly occur in two periods.

1) The winter period continues into the summer. Starting from the second half
of October onwards. The upper Thailand area (Northern, Northeastern, central and
eastern regions) will have a progressive decrease in rainfall until entering the rainy

season in mid-May of next year. This type of drought occurs every year.

2) In the middle of the rainy season Around the end of June to July There will
be some rain. This kind of drought occurs only in certain localities or areas.
Sometimes it may cover a wide area almost all over the country (Thai Meteorological

Department).

The area most affected by drought is the northeast region. Because it is an area where
the influence of the southwest monsoon cannot reach. And if in any year there is no
tropical cyclone moving through this line, it will cause danger. The drought is more
severe. In addition to the areas mentioned above, there are other areas that frequently
experience drought  problems as shown in the Table 1.
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Table 1 The area experienced drought

Month North Northeast Central East South
east west

Jan Drought
Feb Drought Drought Drought
Mar Drought Drought Drought Drought Drought| Drought
Apr Drought Drought Drought Drought Drought
May Drought
Jun |Lack of Rain|Lack of Rain|Lack of Rain| Lack of Rain

Jul |Lack of Rain|Lack of Rain|Lack of Rain| Lack of Rain

2.2 Geoinformatics Technology
Geo-information technology includes of Remote Sensing technology, Geographic
Information System and Global Positioning System. For application in various fields

of work. Details of these technologies are as follows:

2.2.1 Remote Sensing
RS refers to the science and art of acquiring information about objects, areas, or
phenomena from data recording devices without touching the target object. It relies on
the properties of electromagnetic waves as a medium for acquiring information in 3
ways. Characteristics include wavelength (Spectral), morphology of objects on the
earth's surface (Spatial), and changes over time (Temporal) (Abdulraheem et al.,
2023). If weather observation station data are not covered enough, remote sensing
data can make up for it with their wide coverage, high spatial resolution, and strong

timeliness.

2.2.2 Geographic Information System
Geographic information system means an information system that brings information
to be collected, stored, and analyzed in a systematic way (Ershad & Ali, 2020). Data
can be searched and updated, including data obtained from analysis to help make
decisions in various matters. The data collected and stored in the system can be used
to manage and analyze spatial data. The spatial data is also linked with Attribute data
that is used to describe in detail the phenomena and characteristics of that area. This

will make the use of data more accurate and accurate.
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2.2.3 Global Navigation Satellite System
Global Navigation Satellite System is a satellite navigation system. Using electronic
equipment as a receiver to process the positional information at the point where the
receiving device is located. This technology is becoming very popular in surveying
and research applications. Currently, many satellite navigation systems have been
developed, such as BeiDou (China), GPS (USA), GLONASS (Russia), Galileo
(Europe), QZSS (Japan), SBAS (Ashour, EI-Tokhey, Mogahed, & Ragheb, 2022).

There are many remote sensing drought indices that have been proposed and used to
track droughts on a global or regional level. These indices are based on new denoising
algorithms and atmospheric correction algorithms. The effects of drought on plant
growth and development can be seen on remote sensing images as changing spectral
features. Lack of water can change plants' biochemical and physiological features,
which can then cause changes in their spectral properties. So, most remote sensing
drought indices figure out what a drought is by checking the condition of the plants on
the ground. Now, RS provides data about rainfall, temperature, groundwater storage,
evaporation, plant response, and plant functions. Such information can be used to

characterize drought from both temporal and spatial perspectives.

2.3 Drought indices

2.3.1 The Vegetation Condition Index
In The Vegetation Condition Index (VCI) useful for identifying and tracking droughts
and colors to show how healthy the plants are. NDVI data is modified and used to
create vegetation conditions (Kogan, 1995). The Normalized Difference Vegetation
Index (NDVI), calculated from the ratio of red and near-infrared in the
electromagnetic spectrum [11].

(NIR —red)

NDV] = ——
(NIR + red)

NDVI has become the primary way to describe crops. Area covered around the world
Vegetation classification and dynamics and the life cycle of plants (Kogan, 1995).
The NDVI measures the amount of green vegetation by considering that during
photosynthesis, plants absorb visible light and strongly reflect near-infrared light,

which is not used for photosynthesis. NDVI values relate to green biomass, green leaf
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area index (LAI) (Caruso, Palai, Tozzini, D'Onofrio, & Gucci, 2023), and the
percentage of vegetation cover (SaliK & Karacabey, 2019).

it shows the health of the plants and helps with more accurate labeling. The lowest to
highest monthly NDVI values were looked at to see how different they were each
year, VCI shows how the weather affects vegetation (Ejaz, Bahrawi, Alghamdi,
Rahman, & Shang, 2023). so, the following equations were used.

(NDVI = NDVImin)
(NDVImax — NDVImin)

VCI = 100

VCI value is higher, which means that the plants are very healthy. In other words, a
high VCI number means that drought problems are less likely to happen (Arpakorn &
Chen, 2021).

2.3.2 The Enhanced Vegetation Index

The Enhanced Vegetation Index is often used to measure the health of vegetation
(Diodato & Bellocchi, 2008). EVI looks like the Normalized Difference Vegetation
Index (NDVI). EVI can be saturation or the influence of aerosols and soil background
on vegetation indices (Xiao et al., 2003). By considering the differential scattering of
aerosols in blue and red bands, EVI mitigates the effects of aerosols on the red band,
enhancing the accuracy of vegetation monitoring. Unlike NDVI, EVI exhibits a more
significant linear relationship with actual vegetation coverage and provides better
sensitivity to vegetation changes across different landscapes and densities (B. Li,
Tang, & Chen, 2009), so the following equations were used.

(NIR — Red)

EVI =
(NIR +6x Red —7.5x Blue + 1)

2.3.3 The Temperature Condition Index
The Temperature Condition Index (TCI) derived thermal infrared bands. It is related
to the response of vegetation to temperature calculated with The Land Surface
Temperature (LST) and provides important information about the health of vegetation
(Kogan, 1995). surface evapotranspiration by LST variations and assessing
evapotranspiration, vegetation water stress (Karnieli et al., 2010), and drought
occurrence by soil moisture content changes (X. Li et al., 2023), and is defined as:
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(LST — LSTmin)

TCI = X
(LSTmax — LSTmin)

100

where LST is actual, LSTmin and LSTmax are the multi-year minimum and
maximum LST values for each pixel, respectively, calculated from multiyear time
series data. Higher TCI values indicate higher temperatures compared to the multi-
year range, suggesting drought conditions or stress on vegetation (Kocaaslan,
Musaoglu, Tirkes, & Tanik, 2017), while lower TCI values suggest lower
temperatures relative to the multi-year range, which may indicate healthier vegetation

or more favorable conditions (Singh, Roy, & Kogan, 2003).

2.4 Topography

Drought is related to topography (Xu et al., 2023). This study also considered
information from topography and geographic locations. topography at high elevations
in the mountains exhibited a higher sensitivity to drought. Despite having low
climatic water deficits, high-elevation forests face constraints such as shallow, rocky
soils and steep slopes that limit soil water storage and tree root development leading
to vulnerability during drought events (Cartwright, Littlefield, Michalak, Lawler, &
Dobrowski, 2020).

2.5 The Standardized Precipitation Evapotranspiration Index

The Standardized Precipitation Evapotranspiration Index (SPEI) serves as a
comprehensive tool for monitoring both wet and dry conditions, with potential
evapotranspiration (PET) playing a crucial role in the frequency, severity, and
intensity of drought occurrences (Vicente-Serrano & Begueria, 2015). PET estimation
methods, such as Thornthwaite, Hargreaves, and Penman-Monteith, are instrumental
in SPEI calculations (Lin & Shelton, 2020). The Thornthwaite and Hargreaves
methods rely on maximum and minimum temperatures for PET computation, with
Hargreaves additionally utilizing the latitude of the station to estimate extraterrestrial
radiation (Pan et al., 2015). In contrast, the Penman-Monteith method integrates
humidity and wind speed, necessitating more extensive meteorological data. The
choice among these methods depends on the availability of meteorological data

(Pascoa, Gouveia, Russo, & Trigo, 2017).
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The SPEI index reflects the accumulated water content, both above and below ground,
throughout the season and year, making it sensitive to precipitation and atmospheric
evaporative demand (Vicente-Serrano & Begueria, 2015). Calculated over various
timescales, the SPEI provides insights into different temporal patterns of wetness or
dryness. The SPEI 1-month scale is particularly useful for monitoring rapid changes
in drought conditions and their immediate impacts on ecosystems, agriculture, and
water resources. Meanwhile, the SPEI 3-month scale proves valuable for assessing
drought effects on seasonal vegetation growth, water availability, (Tomas-Burguera et
al., 2020) and agricultural productivity. For agricultural planning, the SPEI 6-month
scale is significant as it covers a substantial portion of the growing season (Potopovéa
et al., 2018), aiding in the evaluation of drought stress on crops and natural
vegetation. Finally, the SPEI 12-month scale facilitates the understanding of
cumulative drought effects over an entire year, including impacts on water resources,
ecosystems, and long-term agricultural sustainability (Nwayor & Robeson, 2024;
Saruda et al., 2021).

Table 2 Summary of selected drought indices

Drought indices Usage Reference
Normalized difference It is used for measuring agricultural drought and (SallK &
vegetation index (NDVI) monitoring the health of vegetation. Karacabey,

2019),(Kogan,
1995),(Qin et al.,
2021)

The Land Surface
Temperature (LST)

High LST values over agricultural areas can (Kogan,

indicate insufficient soil moisture for crop growth. | 1995),(Karnieli
et al., 2010),(X.
Lietal.,
2023),(Holzman,
Rivas, & Piccolo,

2014)
The Vegetation Condition Assesses the health of vegetation from the impact (Arpakorn &
Index (VCI) of drought. low VCI values can be indicative of Chen,

vegetation stress due to inadequate water
availability.

2021),(Ejaz et
al.,
2023),(Kogan,
1995),(Rousta et

al., 2020)
The Enhanced Vegetation EVI provides better sensitivity to vegetation (Diodato &
Index (EVI) changes across different landscapes and densities Bellocchi,

2008),(B. Li et
al., 2009)
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Drought indices Usage Reference

The Temperature Condition | TCI values indicate higher temperatures, (Kogan,

Index (TCI) suggesting drought conditions or stress on 1995),(Karnieli
vegetation, TCI values suggest lower temperatures, | et al., 2010),(X.
suggesting healthier vegetation Lietal.,

2023),(Kocaaslan
etal, 2017)

The Standardized Uses monthly rainfall to calculate the (Panetal.,

Precipitation evapotranspiration potential, which indicates the 2015),(Vicente-

Evapotranspiration Index amount of accumulated water both above ground Serrano &

(SPEI) and underground. Begueria, 2015)

2.6 Related Works

Xiehui Li (2023) investigated drought monitoring in southwest China from 2010 to
2019, focusing on comparing land surface temperature (LST) using remote sensing
with meteorological station measurements from 144 weather stations across southwest
China from 1980 to 2019. They employed remote sensing data and machine learning
techniques, specifically Random Forest (RF) and eXtreme Gradient Boosting
(XGBoost). Their model's effectiveness was validated against historical drought
records and various drought indices, including the Standardized Precipitation
Evapotranspiration Index (SPEI) and the Meteorological Drought Composite Index
(MCI). The model demonstrated exceptional accuracy and performance, achieving an
average score of 0.955 for RF and 0.931 for XGBoost in 5-fold cross-validation (X.
Lietal., 2023).

Yangyang Zhao (2022) used machine learning to investigate the relationships between
independent and dependent factors to replicate the Standard Precipitation
Evapotranspiration Index (SPEI) for Shandong province, China. They utilized seven
drought effect factors from the Moderate Resolution Imaging Spectroradiometer
(MODIS) satellite sensor, the Global Precipitation Measurement Mission (GPM), and
the Global Land Data Assimilation System (GLDAS). The study also incorporated
ground-based SPEI derived from monthly temperature and precipitation data from
various weather sites. The Bias-Corrected Random Forest (BRF) model outperformed
eXtreme Gradient Boosting (XGBoost) and Support Vector Machines (SVM),
accurately predicting SPEI distribution and tracking drought conditions in areas

lacking ground-based observations (Zhao et al., 2022).
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Shahana Sultana (2021) assessed the northwestern regions of Bangladesh by
comparing multiple drought indices (VCI, TCI, VHI, TVDI, VSDI) from 1990 to
2018. Their study revealed vegetation reduction (NDVI) and land surface temperature
(LST) increased between 2014 and 2002, leading to drought in 2018, particularly
affecting water-deficient and unfarmed lands. Emphasizing the importance of
satellite-based drought measurement, the study highlights the necessity of better
understanding and managing droughts in northwest Bangladesh's agricultural
landscape (Sultana, Gazi, & Mia, 2021).

Savittri Ratanopad Suwanlee (2023) utilized Earth observation (EO) satellites and
MODIS NDVI data to monitor drought in Northeast Thailand from 2001 to 2019.
Employing the Savitzky-Golay method for noise reduction, the study identified
distinctive drought patterns using optimal indicators like the Vegetation Condition
Index (VCI). Severe and frequent droughts in 2005, 2004, 2007, and 2001
significantly impacted northern and central regions. The VCI demonstrated high
accuracy (R2=0.85), offering a reliable tool for drought monitoring in the region and
effectively displaying the spatial distribution of long-term drought regions (Suwanlee
etal., 2023).

Nuaman Ejaz (2023) focused on drought monitoring in the hyper-arid region of the
Kingdom of Saudi Arabia using remote sensing to analyze the Standardized
Precipitation Evapotranspiration Index (SPEI) and Remote Sensing Retrieved
Drought Indices (RSDIs) from 2001 to 2020. Utilizing multi-temporal Landsat
sensors and the Google Earth Engine platform, they identified the Vegetation
Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health
Index (VHI) as key drought indicators. The study found stronger agreement between
VHI and SPEI compared to TCI and VCI, indicating their suitability for drought
measurement, especially in data-limited hyper-arid regions of Saudi Arabia (Ejaz et
al., 2023).

Junyong Zhang (2023) employed machine learning for drought estimation in the
semi-arid zone of northern China. Using multiple linear regression and bias-corrected
Random Forest algorithms, they analyzed spectral aridity index, VSDI, VCI, TCI,
VHI, GVMI, VSWI, NDWI, RVI, MSAVI, PDI, SPSI, and NMDI from 2001 to 2019,
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along with ground-based climate datasets. They calculated Standard Precipitation
Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Palmer
Drought Index (PDSI) for various time scales. The bias-corrected RF model
demonstrated superior accuracy, establishing it as an effective tool for monitoring

drought at multiple time scales (J. Zhang et al., 2023).

N. Zaabar (2022) utilized a Convolutional Neural Network (CNN) with Object-Based
Image Analysis (OBIA) to analyze spectral index combinations from Sentinel-2
imagery in northern Algeria. NDVI, NDBI, and NDWI were key indices. The CNN-
OBIA approach demonstrated strong accuracy, with Overall accuracy and Kappa
Index reaching 93.1% and 0.91, respectively, outperforming RF-based OBIA
(Narimane, Niculescu, & Mihoubi, 2021).

Foyez Ahmed Prodhan (2021) employed deep forward neural network (DFNN) to
monitor agriculture in South Asia from 2001 to 2016. DFNN outperformed distributed
Random Forest (DRF) and gradient boosting machine (GBM), exhibiting stability in
cross-validated training data and accurately estimating Soil Moisture Deficit Index
(SMDI) across phenology stages. DFNN-estimated SMDI closely matched in-situ
SPEI, suggesting its potential for consistent drought monitoring over a wide area
(Prodhan et al., 2021).

Table 3 Summary of related works

Study area ML Dataset used Indices Ref.
algorithm
Southwest RF, MODIS, NDVI, EVI, (X. Liet
China XGBoost | TRMM3B43 TRMM-SPI, VCI, al., 2023)
TCI, VTCINDVI,
VTCIEVI,
TVDINDVI,
TVDIEVI,
VSWINDVI,
VSWIEVI, SPEI,
MCI
Shandong BRF, MODIS, VCI, TClI, PCI, (Zhao et
province, China. | XGBoost, | GLDAS2.1, SMCI, EVI, ET, al., 2022)
SVM GPM PET
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Study area ML Dataset used Indices Ref.
algorithm
The - Landsat TM, VCI, TCI, VHI, (Sultana et
Northwestern Landsat ETM+, | TVDI, VSDI al., 2021)
regions of Landsat
Bangladesh. OLI/TIRS
The Northeast - MODIS NDVI, VCI, SVI (Suwanlee
Thailand. etal.,
2023)
The hyper-arid - Landsat 7 and 8 | SPEI, VCI, TCI, (Ejaz et al.,
region of the VHI 2023)
Kingdom of
Saudi Arabia.
The semi-arid MLR, RF | MODIS, VSDI, VCI, TCI, (J. Zhang
zone of northern GLDAS2.1, VHI, GVMI, VSWI, |etal.,
China. GPM NDWI, RVI, 2023)
MSAVI, PDI, SPSI,
NMDI
The North- CNN, Sentinel 2 NDVI, NDWI, (Narimane
western region | OBIA NDBI etal.,
Algeria (SVM, RF) 2021)
The South Asia | DFNN MODIS, TCI, VHI, VCI, (Prodhan et
MERIS, EDI, SPEI, SPI, al., 2021)
GLDAS, PAI, PCI
CHIRPS,
GIMMS,

Station Data

2.7 Machine Learning Models Algorithms
This study further employed the Logistic Regression (LR), XGBoost (XG), Random

Forest (RF), and Extra Trees (ETR) models as baseline models against which to

benchmark the predictive performance. The baseline models chosen to possess the

ability to allow a robust assessment of the model against various degrees of

complexity. The model was further used to benchmark the explainability of the

drought in northeast Thailand.

2.7.1 Extreme Gradient Boosting
The XGBoost algorithm, developed by Chen and Guestrin (Chen & Guestrin, 2016).

Which is a machine learning technique for regression and classification problems

which produces a prediction model in the form of an ensemble of weak prediction
models (R. Zhang, Chen, Xu, & Ou, 2019). The XGBoost algorithm represents a
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significant improvement in computational efficiency within research (B. Zhang et al.,
2023). Its robust architecture not only enhances reliability but also facilitates the
attainment of more dependable results. This algorithm has garnered preference in
research due to its adeptness in handling vast datasets through parallel processing and
distributed computing capabilities, thereby amplifying its efficacy in addressing
complex scientific inquiries is a unique way to apply both Gradient Boosting Machine
and Regression Trees (CART) (Ekmekcioglu, 2023). It tries to avoid overfitting while
making the best use of computing resources by combining predictive and
regularization terms in simplified objective functions. XGBoost also does parallel
math automatically while the training is going on (Gul, Staiou, Safari, & Vaheddoost,
2023). XGBoost starts with a single leaf and adds more branches to the tree
repeatedly until the best split is found. With XGboost, you can't train multiple trees at
the same time, but you can make separate tree nodes at the same time. XGBoost has a
distributed weighted quantile sketch method that helps you find the best split points and
work with weighted datasets (Ali, Abduljabbar, Tahir, Sallow, & Almufti, 2023; Chen &
Guestrin, 2016). The weights of individual trees can be scaled down by a constant, thus
reducing the impact of a single tree on the final score (Mehraein, Mohanavelu, Naganna,
Kulls, & Kisi, 2022).

2.7.2 Random Forest
The Random Forest algorithm, developed by Breiman (Breiman, 2001). RF is a
combination classification or regression method based on statistical learning theory.
The resampling bootstrap method is used to get several samples in an RF, and
regression trees are built for each bootstrap sample (J. Li et al., 2021). Most of the
time, RF use bootstrapping to make random groups from a starting dataset while
keeping the population size the same. A decision tree is built for each of these groups.
In regression tasks, the final output of an RF model is simply the average of the
predictions made by each tree. In classification tasks, on the other hand, the outcome
that appears most often is picked as the final output of the RF model (Niazkar et al.,
2024). The random forest method is famous for being able to handle a lot of data, find
complex relationships between factors, and make correct predictions. As part of this

regression method, we used estimators that consider the number of trees, the
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maximum depth set as the tree's highest level, and other factors (Aziz, Camana,

Garcia, Hwang, & Koo, 2023). algorithm shown in figure 2.

[ Dataset Input (X) J

Decision Tree Decision Tree Decision Tree

l

Result 1 Result 2 Result n

| ( ‘ 1 |
L

Average all predictions J

[ Random Forest Prediction (y) ]

Figure 2 Diagram of Random Forest

2.7.3 Extra Trees Regression
The Extra Tree Regression (ETR) algorithm was created by building on the Random
Forest (RF) model and developed by Geurts et al (Geurts, Ernst, & Wehenkel, 2006).
The distinction between Extra Trees and Random Forest lies in their approach to
selecting cut points for node splitting (John, Liu, Guo, Mita, & Kidono, 2016).
Random Forest selects the optimal split, while ETR chooses it randomly.
Consequently, in terms of computational efficiency, the ETR algorithm is faster as it
randomly selects the split point without calculating the optimal one. (Lou et al., 2022)
The ETR is a supervised learning algorithm that needs to be trained on a labelled
dataset that has input features and goal values that go with them. Like the Random
Forest algorithm, ETR algorithm makes a lot of decision trees, but each tree's samples
are chosen at random and are not replaced. This makes a set of datasets with unique
samples for each tree. Each tree also gets a random set of a certain number of features
from the whole set of features. In particular, the ETR algorithm predicts a continuous
target variable by looking at the properties of the input. This algorithm proves

particularly valuable when dealing with complex regression problems (Aziz et al.,

2023).
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2.8 Summary of this chapter

The In conclusion, the literature review provides various factors influencing weather
patterns, particularly focusing on Thailand. Thailand's seasonal variations, including
summer, rainy season, and winter, and the meteorological conditions during each
period. the temperature and rainfall patterns across Thailand, the variations in
different regions and seasons. Additionally, it discusses the prevalent issue of drought
in Thailand, attributing it to factors such as climate change, population growth, and
increased water demand. The chapter also outlines the geographic and topographic
factors influencing drought susceptibility, particularly noting the sensitivity of high-

elevation regions.

Moreover, the theories of geoinformatics technologies such as remote sensing,
geographic information systems (GIS), and global navigation satellite systems
(GNSS), emphasize their significance in monitoring and analyzing weather-related
phenomena. these technologies aid in drought assessment and mitigation efforts
through the analysis of various indices such as the Vegetation Condition Index (VCI),
Enhanced Vegetation Index (EVI), Temperature Condition Index (TCI), and the
Standardized Precipitation Evapotranspiration Index (SPEI).

Furthermore, the chapter introduces machine learning models, including Logistic
Regression, XGBoost, Random Forest, and Extra Trees, which are utilized for
predictive analysis and understanding the complexities of drought in northeast

Thailand. It provides the algorithm's functions through data analysis and prediction.
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CHAPTER 3 MATERIALS AND METHODS

The methodology of this study contains XGBoost, Random Forest and Extra
Trees models using remote sensing data from Landsat 8 and ground observation
data from the Thai Meteorological Department for the calculation of drought
indices. This chapter includes data collection, data preprocessing, machine
learning drought period 2014 - 2023 and model accuracy comparison. All steps
will be detailed in the following.

3.1 General Background of Study Area

The purpose of this research is to investigate the effects of drought in the
northeast of Thailand. It's between the latitudes of 14° and 16° N and the
longitudes of 101° and the 106° East (Mongkolsawat et al., 2001). The terrain is
on the Korat plateau because most of it is a plateau show in figure 3. Slopes
from west to east. The edge of the area is a high mountain. Most of the area is
covered with rocks. The plain area is a large basin of land. The Korat Basin
covers three-quarters of the entire northeastern region. It is considered the
widest plain in Thailand, with an average height of 120-170 meters above
mean sea level. The area in the middle of the basin is a low plain. The Mun
River is the main river that drains water from the plain edge of the basin. It is
the most important tributary of the Mekong River. Its origin is in Nakhon

Ratchasima Province.

It is the longest river in this region, 641 kilometers long, with a basin area of
approximately 70,100 sq. km., lying parallel to the Phanom Dong Rak
mountain range. The Mun River is a river. The slope is very slight, meaning
that the entire length of the river will decrease by an average of 52 meters, or
16 centimeters per kilometer, causing the plains in the Mun River area to be
flooded every year. This is because the water cannot be drained out in time
with the water capacity. The Mun River flows through Nakhon Ratchasima,
Buriram, Surin, Sisaket and Ubon Ratchathani provinces. and the Mun River
flows into the Mekong River in Khong Chiam District. Ubon Ratchathani

Province (Arts and Culture Center Khon Kaen University). showed in Figure 3.
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Figure 3 Study area the northeast of Thailand

3.2 Workflow of Research

Mapping the Spatio-Temporal Dynamics of Drought in the northeast of Thailand, 2014 - 2023.
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Figure 4 Methodology framework of this study
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This workflow explains from beginning to completion, the methods for conducting
this investigation. Figure 4 displays all data variables and sources, including data
preprocessing and remote sensing data such as vegetation, temperature, topography,
and precipitation. While ground observation was calculated according to SPEI, the
data were processed, and the data were also converted from vector to raster formats.
For the model prediction. Three machine learning algorithms were used to estimate
the drought in the study area and identify the most effective model with the most
important feature variables. Finally, the spatial distribution of the drought area was

computed using the Zonal statistic from the best model output.

3.3 Data Collections

This study combines remote sensing techniques and ground observations to calculate
the drought area. Remote sensing data sourced from Google Earth Engine, a cloud-
based geospatial data analysis platform, enables the access and analysis of vast
quantities of satellite imagery, climate data, and other pertinent geospatial
information. Additionally, meteorological data obtained from the Thai Meteorological
Department contributed to the comprehensive dataset utilized in this calculation of the

drought area.

3.3.1 Remote Sensing data
The remote sensing data used The Landsat 8 has a 30-meter spatial resolution. This
dataset contains atmospherically corrected surface reflectance and land surface
temperature derived from the data produced by the Landsat 8 OLI/TIRS
("LANDSAT/LCO08/C02/T1_L2") sensors (Holden & Woodcock, 2016; Orusa, Viani,
Cammareri, & Borgogno Mondino, 2023; Perez & Vitale, 2023). using Band 2 (blue),
Band 4 (red), Band 5 (near infrared), and Band 10 (surface temperature). This data
covered a period of 10 years, from 2014 to 2023. This data was used to analyze the
drought indices VCI, EVI, TCI and topography this study use DEM from Copernicus
("COPERNICUS/DEM/GLO30") (Guth et al., 2021; Im, 2023; T. Li et al., 2023;
Yuzugullu, Fajraoui, Don, & Liebisch, 2024) DEM is a Digital Surface Model (DSM)
that represents the surface of the Earth including buildings, infrastructure and
vegetation. This DEM is derived from an edited DSM named WorldDEM&trade and
Precipitation from Climate Hazards Group InfraRed Precipitation ("UCSB-
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CHG/CHIRPS/DAILY") with Station Data (CHIRPS) is a quasi-global rainfall
dataset (Du et al., 2023; Gwatida et al., 2023). CHIRPS incorporates 0.05° resolution
satellite imagery with in-situ station data to create gridded rainfall time series for

trend analysis and seasonal drought monitoring by Google Earth Engine.

3.3.2 Ground Station Data
These ground observations cover a period of 11 years from 2013 to 2023 because
SPEI 12 requires data from the previous year to calculate the period to ensure accurate
and comprehensive assessments of drought severity over a full year. The
meteorological data, including precipitation and temperature data, is collected
monthly from 11 weather stations (showing station data in Appendix A) across the
northeast of Thailand. The data comes from the Thai Meteorological Department.
And prepare the data from the table in pdf to csv format using the Microsoft Excel
program to prepare the data (showing precipitation and temperature data in the
appendix B, C, D) from the original format into the SPEI package format before

calculating in the R program.

Table 4 Summary of data collections

Type Sources Dataset Index Spatial Period Source
resolution
VCI
Landsat 8 EVI 30m USGS
Remote sensing TCI 2014- 2023
Data GLO-30 DEM Copernicus
USGS/
CHIPRS PCI CHC
i ipitati 2013 - 2023
Ground station | PIECIDAIION | o0 |91 pations TMD
Data Temperature

3.4 Preprocessing Data

The workflow includes several key steps. It begins with data loading, followed by
index computation. During the index calculation phase, each index is processed
individually, and subsequently merged into a singular image using the addBands
function in Google Earth Engine. This combine image is later exported as a GeoTiff
file, resulting in the generation of multiple images. After that, exporting image data

will receive multiple images because of the large area. Subsequently, the integration
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of these image merges using the GDAL library in Python 3.11 within the Jupyter
Notebook environment. Each year, the summary formula for preprocessing is shown
in Table 5.

3.4.1 The Vegetation Condition Index
The Vegetation Condition Index (VCI) is derived from the Normalized Difference
Vegetation Index (NDVI), computed utilizing Landsat 8 bands 4 (red) and 5 (near
infrared). The NDVI is a metric widely employed for assessing vegetation health
(Gessner, Reinermann, Asam, & Kuenzer, 2023). Utilizing Google Earth Engine,
NDVI values are processed to generate the VCI, which provides insights into the
vegetation's condition at a spatial resolution of 30 meters. After that, computation, the
resulting VCI values undergo a normalization process to standardize their scale to a
range of 0 to 1. The methodology is iterated each year, covering the period from 2014
to 2023. The entire process, ranging from the calculation of the Normalized
Difference Vegetation Index (NDVI) to the normalization of the Vegetation Condition
Index (VCI), The formula for this process summary is in Table 5. showed VCI in

Figure 5.

2014 | 2015

2021 2023

Figure 5 The Vegetation Condition Index 2014 - 2023
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3.4.2 The Enhance Vegetation Index
The Enhanced Vegetation Index (EVI) exhibits heightened sensitivity in regions
characterized by dense vegetation and can effectively discern stress and alterations
attributed to drought conditions. (Yang, Xu, Stovall, Chen, & Lee, 2021) Its
calculation involves the utilization of Landsat 8 bands 2 (blue), 4 (red), and 5 (near-
infrared). The formula for EVI computation is detailed in Table 5. Following
computation, the resultant EVI values undergo a normalization process, scale is
standardized within the range of 0 to 1. This methodology is recurrently applied

annually throughout the timeframe spanning from 2014 to 2023. showed in Figure 6.

N

EVI -

YV M Low 0

2014 | 2015 | 2016 I 2017 I 2018

2019 . 2020 H 2021 H 2022 H 2023

Figure 6 The Enhance Vegetation Index 2014 - 2023

3.4.3 The Temperature Condition Index

The Temperature Condition Index (TCI) extracted from satellite imagery data stands
as a pivotal metric elucidating the thermal characteristics of the land surface.
Stemming from the computed Proportion of Vegetation cover (PV), TCI acts as a
comprehensive indicator of vegetative abundance, exerting a profound influence on
surface temperature dynamics. This influence stems from vegetative processes such as
transpiration, altering surface energy balance, and thermal conductivity, modulating
heat exchange with the atmosphere. Leveraging the Normalized Difference
Vegetation Index (NDVI) facilitates precise quantification of vegetation density and
health, enriching the accuracy of TCI assessments (Spadoni, Cavalli, Congedo, &
Munafo, 2020).
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Concurrently, the variable emissivity is a fundamental parameter dictating the
surface's emissive properties. Emissivity exhibits variability across surface types,
contingent upon factors such as moisture content, surface roughness, and material
composition. Integrating "PV" into the calculation of "EM™ enhances the estimation
of land surface temperature (LST), a pivotal metric reflecting the thermodynamic state

of the Earth's surface.

Subsequently, the computation of LST employs thermal band data from Landsat 8,
incorporating emissivity values derived from NDVI. Emissivity, indicative of a
surface's ability to emit thermal radiation, plays a crucial role in refining LST
estimates, facilitating robust assessments of surface thermal conditions.

Upon deriving LST values, the Temperature Condition Index (TCI) is computed, the
thermal state of the land surface. TCI serves as a vital tool for discerning ecological
processes, agricultural productivity, and broader climate dynamics. The normalization
of TCI values to a standardized scale of 0 to 1. Summary formula indices showed in
Table 5. showed TCI in Figure 7.

“Llow:0

N
TCI v
Y

2014 1 2015 1 2016 | 2017 1 2018

Figure 7 The Temperature Condition Index 2014 - 2023
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3.4.4 Topographic Data
Drought is related to topography and local climate conditions, therefore. This study
also considered information from topography and geographic locations. The Digital
Elevation Model (DEM), influence on hydrology, vegetation, and climate is therefore
crucial for this study (Wilson, 2012). the slope from the elevation data can provide
significant topographic input data. after that normalization scale range of values to a
standardized scale of 0 to 1. showed in Figure 8.

High : 1

DEM =

-Low:0

Figure 8 Elevation (DEM)
3.4.5 Climate Hazards Group InfraRed Precipitation with Station Data

This study using precipitation products. The precipitate on datasets for this study were
obtained from the Climate Hazards Group InfraRed Precipitation with Station Data
(CHIRPS), covering over past 10 years. The CHIRPS is a satellite-estimated product
blended with gauge observation from GHCN (Global Historical Climate Network)
and GSOD (Global Summary of the Data set) data sources. can be extracted yearly.
(Prodhan et al., 2021) using the ‘bilinear resampling technique’. after that
normalization scale range of values to a standardized scale of 0 to 1. Showed in

Figure 9.
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CHIPRS v I

I I201 4I I 1 . I201 5I I 1 I I201 6I I 1 I I2017I . 1 I .201é ‘

S b b b il ]

2019 - 2020 H 2021 H 2022 H 2023

| St s 4

Figure 9 Climate Hazards Group InfraRed Precipitation with Station Data (CHIPRS)
2014 — 2023

3.4.6 The Standard Precipitation Evapotranspiration Index

The ground station data for the preprocessing of the Standard Precipitation
Evapotranspiration Index (SPEI) for drought assessment, comprising monthly
precipitation and temperature data collected from Thai Meteorological Department during
2013-2023. The analysis is conducted at each station, involving the calculation of the
SPEI using R packages in R Studio (Montes-Vega, Guardiola-Albert, & Rodriguez-
Rodriguez, 2023). SPEI and its estimation at different time scales (3, 6, 9, and 12 months)
(Zhang, Wang, Chen, & Bai, 2020).

The first step is to calculate potential evapotranspiration (PET) using the Hargreaves
method and minimum, maximum temperatures and the station's latitude are parameters
(Slavkova, Gera, Nikolova, & Siman, 2023). Subsequently, the climatic water balance
(CWB) is derived by subtracting PET from precipitation data (Bandoc & Pravalie, 2015).
This equation, precipitation minus PET, quantifies the interplay between precipitation
supply and evapotranspiration demand. SPEI is computed across various time scales,
including 3, 6, 9, and 12 months. The SPEI values are then exported to a CSV file and

combined for all stations into a single CSV file.

Afterward, using ArcMap, a feature class is created from latitude and longitude
coordinates extracted from the CSV file, displaying the point stations. Subsequently,

spatial interpolation is performed using Inverse Distance Weighting (IDW) (Liu, Yang,
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Yang, & Wang, 2021) within ArcGIS to interpolate data points and generate spatially
continuous surfaces. Following interpolation, the data is reclassified according to
predefined criteria outlined in Table 6. After that, the Create Fishnet Tool is creating a
grid of points covering the study area, which is then clipped to the desired extent.
Subsequently, the Extract Values to Points tool within the Spatial Analyst toolbox is

utilized to extract raster values to the point locations with raster information.

Finally, the data is converted from a feature class to a shapefile format and processed
using GeoTile Python library within the Jupyter Notebook environment program to

convert it into raster format through rasterization. each year 2014 — 2023, with SPEI3 and

SPEI6 This was selected. Showed in Figure 10. (a)
N ValueHh2
SPEI3 i
“/ . Low:-2
I I2014. I 1 I .2015‘ I 1 . .2016‘ . ] I l2017. ’ 1 I I201é I
|| - s ®
s B b .
T T T T T T T T 1 T T T T T 3 2 T T T L T T
2019 " 2020 H 2021 H 2022 H 2023
° = ‘ g
Bl et | k| il | |
T T T T 1 T T T T T T T T T T T ,‘IAE E
b
N ValueH (2)
b igh :
SPEI6 4‘5: -
S
I :2014l l | ‘ I2015l I 1 l '2016I l 1 I '2017I l 1 I I201é .
Qay | Sl Lan| s 2
- 2019 L 2020 H 2021 H 2022 H 2023 -

Figure 10 Ground Observations (a) SPEI 3 and (b) SPEI 6 Month scale



80€608YTLT

21 :bos / T€:00:9T 8952Z00T :499% / STsaul L£00T659 sTsaurt nng |||

32

Table 5 Summary formula remote sensing and ground observation data

Indices Formula Note Reference
(NIR —red) - (Qinetal., 2021)
NDVI NDV] = ————
(NIR + red)
1. Digital Numbers to Spectral Radiance. (Sobrino, Jimenez, & Paolini,
LA = ML X Qcal + AL 2004),(Periasamy, Palanisamy,
2. Spectral Radiance to Brightness Temperature. Ravichandran, & Jothiramalingam,
2021),(Chander, Markham, & Helder,
BT = m —273.15 2009)
" \I2
3. Proportion of Vegetation.
. 2
LST (NDVI — NDVImin)
PV = X1
v [(NDVImax — NDVImin) 00
4. Land Surface Emissivity.
EM = 0.004 * PV + 0.986
5. Land Surface Temperature.
LST—(BT)+W><( il ) X In(EM
=7 1a380) < INEM)
(NIR — Red)
EVI EVI =
(NIR + 6 x Red — 7.5 x Blue + 1)
NDVImin and (Qinetal., 2021)
NDVImax are the
minimum and
maximum values of
(NDVI — NDVImin) the NDVI
VCI 1= X1 R '
ve (NDVImax — NDVImin) 00 respectively; the
The smaller the VCI,
the more likely a
drought will occur.
(X. Lietal., 2023)
(LST — LSTmin) -
TCI = = 7
et (LSTmax — LSTmin) x 100
VeI —vCImin) -
scaleVVCI = —
scalevCl (VCImax — VCImin)
(EVI — EVImin) -
scaleEVI =
scaleEVl = opy Imax — EVImin)
(TCI — TCImin) -
scaleTCI =
scaleTcCl (TClmax — TCImin)
(DEM — DEMmin) -
scaleDEM =
scaleDEM = o p fimax — DEMmin)
scalePCI -
scalePCI _ (Precipitation — Precipitationmin)
"~ (Precipitationmax — Precipitationmin)
1. Potential Evapotranspiration. Calculated according | (Zhao et al., 2022),(Breiman, 2001)
PET = 0.0023 - (Tmean — 17.8) - Tmax — Tmin - Ra to the Hargreaves ,(Vicente-Serrano & Begueria, 2015)
SPEI 2. SPEI calculation. method

D; = P, — PET; -

Table 6 SPEI classification

Grade Type SPEI Value
1 No drought -0.5 < SPEI
2 Light drought -10<SPEI<-0.5
3 Moderate drought -1.5<SPEI<- 1o
4 Severe drought -20<SPEI<-15
5 Extreme drought SPEI<-2.0
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3.5 Predictive Model

The machine learning models are Extreme Gradient Boosting (XGBoost), Random
Forest (RF) and Extra Tree Regression (ETR), which are established in Python 3.11
through the integration of libraries such as GDAL, Numpy, Matplotlib, Scikit-learn,
and the XGB Python Library within the Jupyter Notebook environment. which choose
to predict and estimate drought, which can obtain effective results and calculate
feature importance from each model using the machine learning method permutation

importance calculation to rank each variable relevance.

3.5.1 Extreme Gradient Boosting
Extreme gradient boosting, or XGBoost, is a gradient boosting algorithm that is
commonly used in regression problems. XGBoost makes model learning more
effective by using parallel computing and an additive decision tree training technique
to turn many weak learners into strong learners. XGBoost can do error assignments
with this method. The XGBoost algorithm was implemented using the xgboost.xgb

library. the model follows the below steps.

In the first step, the GDAL library is using to ingest both image X and image y, with
the subsequent creation of an array whose dimensions are dynamically adjusted based
on the raster dataset's characteristics, ensuring uniformity across identical band
numbers. Following this, an iterative process ensues, systematically traversing each
band of the image to populate a NumPy array with the pixel values of each band from

the raster dataset.

next step, the NumPYy library is used to stack arrays horizontally. the features (X) and
labels (y) into a unified 2-D array denoted as DataX. This operation combines the
respective elements from both X and y. Subsequently, the train_test split function
from scikit-learn is employed to partition the dataset, randomly dividing it into
training and testing subsets, with 30% of the data allocated for testing and the

remaining 70% for training.

In the subsequent step, an XGBoost regressor model is instantiated, with the scoring
metrics for cross-validation being explicitly defined. The model is trained on the
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training dataset using the fit method, following which an evaluation is conducted and

the results are recorded in a text file.

The subsequent step assessing the importance of each feature predictor variable
within the model, aimed at identifying the most influential features crucial for
accurate predictions. This information serves as a for feature selection, elucidating
data relationships, and potentially enhancing model performance by prioritizing

critical features.

Finally, the process culminates in the prediction and exportation of raster data.
Utilizing a trained model, class labels for a raster dataset are predicted, subsequently

exported into a new raster file.

3.5.2 Random Forest Regression
The Random Forest and several decision trees are put together in parallel, without
interacting with each other. This means that the predicted values are not sensitive to
or based on the trained data that was used, and the method does not over-fit. Random
Forest approach is to combine some separate and parallel decision trees to get to the
result. To sum up the step of random forest regression. the model follows the below
steps (Zarei, Mahmoudi, & Moghimi, 2023).

In the first step, the GDAL library is using to ingest both image X and image y, with
the subsequent creation of an array whose dimensions are dynamically adjusted based
on the raster dataset's characteristics, ensuring uniformity across identical band
numbers. Following this, an iterative process ensues, systematically traversing each
band of the image to populate a NumPy array with the pixel values of each band from

the raster dataset.

next step, the NumPYy library is used to stack arrays horizontally. the features (X) and
labels (y) into a unified 2-D array denoted as DataX. This operation combines the
respective elements from both X and y. Subsequently, the train_test_split function
from scikit-learn is employed to partition the dataset, randomly dividing it into
training and testing subsets, with 30% of the data allocated for testing and the

remaining 70% for training.
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In the subsequent step, a Random Forest model is instantiated, with the scoring
metrics for cross-validation being explicitly defined. The model is trained on the
training dataset using the fit method, following which an evaluation is conducted and

the results are recorded in a text file.

The subsequent step assessing the importance of each feature predictor variable
within the model, aimed at identifying the most influential features crucial for
accurate predictions. This information serves as a for feature selection, elucidating
data relationships, and potentially enhancing model performance by prioritizing

critical features.

Finally, the process culminates in the prediction and exportation of raster data.
Utilizing a trained model, class labels for a raster dataset are predicted, subsequently

exported into a new raster file.

3.5.3 Extra Trees Regression
Extra Trees construct multiple trees like RF algorithms during training time over the
entire dataset. During training, the ETR will construct trees over every observation in
the dataset but with different subsets of features (Baykal, Terzi, Yildirim, & Taylan,
2023). that although bootstrapping is not implemented in ETR original structure, it
can add it in some implementations. Furthermore, when constructing each decision
tree, the ET algorithm splits nodes randomly (Adnan, 2022). The main advantage of
Extra Trees is the reduction in bias (Zafari, Zurita-Milla, & lzquierdo-Verdiguier,
2019). This is in terms of sampling from the entire dataset during the construction of
the trees. Different subsets of the data may introduce different biases in the results
obtained, hence, Extra Trees prevents this by sampling the entire dataset. Extra Trees
reduce variance. This is a result of the randomized splitting of nodes within the
decision trees hance the algorithm is not heavily influenced by certain features or

patterns in the dataset.

In the first step, the GDAL library is using to ingest both image X and image y, with
the subsequent creation of an array whose dimensions are dynamically adjusted based
on the raster dataset's characteristics, ensuring uniformity across identical band

numbers. Following this, an iterative process ensues, systematically traversing each
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band of the image to populate a NumPy array with the pixel values of each band from

the raster dataset.

Next step, the NumPy library is used to stack arrays horizontally. the features (X) and
labels (y) into a unified 2-D array denoted as DataX. This operation combines the
respective elements from both X and y. Subsequently, the train_test_split function
from scikit-learn is employed to partition the dataset, randomly dividing it into
training and testing subsets, with 30% of the data allocated for testing and the

remaining 70% for training.

In the subsequent step, an Extra Trees model is instantiated, with the scoring metrics
for cross-validation being explicitly defined. The model is trained on the training
dataset using the fit method, following which an evaluation is conducted and the

results are recorded in a text file.

The subsequent step assessing the importance of each feature predictor variable
within the model, aimed at identifying the most influential features crucial for
accurate predictions. This information serves as a for feature selection, elucidating
data relationships, and potentially enhancing model performance by prioritizing

critical features.

Finally, the process culminates in the prediction and exportation of raster data.
Utilizing a trained model, class labels for a raster dataset are predicted, subsequently

exported into a new raster file.

3.5.4 Cross-validation
A cross-validation was the choice to assessment of prediction model. A way to test
prediction models is with K-fold cross-validation. There are k subsets, or folds, in the
collection. It is trained and tested k times, with a different fold used as the validation
set each time. To get an idea of how well the model generalizes, performance
measures from each fold are averaged. This way helps with evaluating, choosing, and
tuning hyperparameters, giving a more accurate picture of how well a model works.
Then XGB, RF and ETR are separate data training and testing with 70% and 30% of
dataset. To verify the validation and stability of the model for predicting SPEI, we
used the 5-fold cross-validation (CV) method. Briefly, data is randomly divided into 5
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groups by serial number or time. Four of the groups are used to build a model, which
is called a training dataset, and the remaining group, called a test dataset, is used to
validate the model. This process is repeated 5 times, and the average CV R2
(coefficient of determination), CV RMSE (root mean square error) and CV MAE
(mean absolute error) are then obtained. During this whole process, the training and

testing would be done exactly once in each set (fold). It helps to avoid overfitting

(Santos, Soares, Abreu, Araujo, & Santos, 2018).

3.6 Accuracy Assessment

The estimation of drought XGB, RF, ETR models was constructed by machine
learning methods. The model set 70% for drought training and validated the
remaining 30% of the data. in this study, using the assessment comparison between
the regression models was evaluated in terms of the difference between the actual
values and the predicted statistical. R-squared (R2) and Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) were commonly used metrics, R2 helps
understand the proportion of variance explained by the model (Gond, Gupta, Patel, &
Dikshit, 2023), while RMSE indicates the average magnitude of the residuals or errors
made by the model. When comparing models, higher R-squared values and lower
RMSE values generally indicate better model performance. using equations. These are

defined as follows.
n
1
MAE = —Z |P; — 0]
n .
=1

n
1
i=1

?=1 (Pl - 51_)2
?=1 (Pl - Oi)2

2 —

3.7 Mapping the Spatial Distribution Drought

After training the drought models and obtaining suitable models and significant
factors, their accuracy was evaluated using R2, Root Mean Square Error (RMSE), and
Mean Absolute Error (MAE) for the study area. The model was then used to calculate

drought values for each pixel each year, and then, to further analyze the spatial
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distribution of drought, the zonal statistical technique within the QGIS geographic

information system (GIS) platform was employed.

This technique facilitated the delineation of subdistrict areas within northeast
Thailand and the calculation of their respective drought severity indices. Specifically,
the average drought values within each subdistrict were computed, providing insights
into the localized impact of drought, and allowing us to visualize the prediction of
drought. The final method is mapping the spatial distribution of drought in northeast
Thailand over a period from 2014 to 2023. ArcMap displays this method.

3.8 Summary of this chapter

In conclusion, Chapter 3 provides the methodology utilized for drought dynamics in
northeast Thailand, primarily based on machine learning models and integrating
remote sensing and ground observation data. The research area, characterized by the
Korat Basin and the Mun River, is thoroughly described to provide context for the
study's scope. The workflow encompasses data collection, preprocessing, and model
training and evaluation. Remote sensing data from Landsat 8, including vegetation
indices and topographic information, are combined with ground observation data from

the Thai Meteorological Department to compute various drought indices.

The preprocessing phase involves steps such as data loading, index computation, and
image merging using the GDAL library. Essential indices like the Vegetation
Condition Index (VCI), Enhanced Vegetation Index (EVI), Temperature Condition
Index (TCI), and precipitation products from the Climate Hazards Group InfraRed
Precipitation with Station Data (CHIRPS). After that, the datasets are calculated and

normalized across datasets.

Subsequently, the predictive modeling section details the implementation of machine
learning algorithms, including XGB, RF, and ETR for drought estimation. Each
model training and evaluation with cross-validation employed to assess prediction
performance and ensure model robustness. Accuracy assessment metrics such as R-
squared (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) are
utilized to evaluate model performance, providing insights into the spatial distribution
and severity of drought across northeast Thailand.
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CHAPTER 4 RESULTS AND VALIDATION

This chapter presents the experiment and the result of machine learning to evaluate
the spatio temporal of drought described in Chapter 3 over northeast of Thailand. The

results are the following.

4.1 Analysis of Spatio-Temporal of drought

The Precipitation data analysis Precipitation data collected from 11 stations of the
Thai Meteorological Department which had data for 10 years from 2014 to 2023. The
average annual precipitation is in the range of 1,100-1,800 mm per year, with the
highest average in 2022 at 1,848 mm. and the lowest mean value in 2018 at 1,175

mm. showed in Figure 11
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Figure 11 Average annual precipitation from TMD (2014-2023)

The results of the Standardized Precipitation Evapotranspiration Index (SPEI) across
diverse temporal scales, ranging from 3, 6, 9, and 12 months, are presented. Figure 12
illustrates the temporal evolution of drought patterns aggregated monthly from 2014
to 2023 at the Northeast Thailand station. Over shorter durations, the SPEI index
exhibits rapid fluctuations, whereas its variability diminishes with increasing temporal
spans, resulting in protracted periods of calculated drought conditions. This

phenomenon is attributed to the utilization of longer periods of rainfall data in the
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computation process. Consequently, the selection of the temporal scale for rainfall
data computation hinges on the specific objective of the analysis, whether it pertains
to short-term drought monitoring or a broader overview across extended periods.

The short-term reflects cumulative precipitation patterns over cumulative with SPEI 3
scale precipitation patterns. Specifically, the investigation identified instances of
drought, as indicated by the SPEI values. Notably, drought conditions were observed
in June 2015, signifying a period of reduced precipitation and potential water scarcity.
Subsequently, drought was again identified in April 2016, suggesting a persistence of
reduced precipitation levels. Furthermore, the end of 2018 and 2019 marked drought
conditions, emphasizing the severity of precipitation. Additionally, the onset of
drought at the beginning of 2020 and 2021 signifies a period of reduced precipitation

and potential water scarcity.

The long-term reflects cumulative precipitation patterns over with SPEI 12. This
investigation discerned negative SPEI values from mid-year 2015 to 2016, indicative
of incipient drought conditions. Subsequently, during mid-year 2018 to 2020, the
persistence of negative values underscores prolonged drought conditions across

various months. showed in Figure 12.
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4.2 Comparing Performance of ML Models
4.2.1 Performances of Machine Learning Models

Traditional methods are often constrained by various factors and can incur high costs.
In contrast, machine learning (ML) models leverage with RS and the capability to
analyze extensive geographic areas, providing global coverage with accuracy. This
section compares the performance of three machine learning models: XGB, RF, and
ETR, in predicting drought indices based on remote sensing as independent variables
(X) and ground observation data as the dependent variable (y). The evaluation
employs metrics such as R2 and RMSE to assess the accuracy and reliability of the
models in capturing the intricate relationships between spectral indices and drought
conditions in the northeast region of Thailand.

The models were implemented in a Jupyter Notebook environment. A training set was
created by randomly selecting 70% of the samples from the dataset, while the
remaining 30% comprised the test set. Model parameters were fine-tuned using the 5-
fold cross-validation (CV) method. In this process, the training set of the RF model
was divided into five partitions, with four partitions utilized for training and one for
validation. The CV score for each fold was averaged to ensure a comprehensive

assessment of model reliability and accuracy.

Table 7 Summary parameter of Machine learning

Characteristics Descriptions
Model XGBoost, Random Forest, Extra trees
Parameter n_estimators = 200, K fold =5

Dependent variable SPEI3, SPEI6

Independent variables VCI, EVI, TCI, DEM, CHIPRS

Different models produced different outcomes. when integrated with data from
remote sensing and environmental variables. The study compared the performance of
different machine learning models, including XGB, RF, and ETR, in predicting
drought indices (SPEI 3 and SPEI 6) using remote sensing and environmental
variables in Northeast Thailand. The results showed that all three models exhibited
varying levels of precision across different metrics and datasets. shown accuracy

assessment of the machine learning in Table 8.
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Table 8 Accuracy assessment of the Machine Learning

SPEI ML Accuracy 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023
SPEI3  XGBoost MAE 6.12 224 08 875 145 147 199 163 09 0.07
RMSE 141 83 505 176 259 244 341 282 567 135

R2 886 721 632 875 814 924 830 824 751 66.1

RF MAE 507 163 055 595 110 106 167 134 103 0.12

RMSE 138 783 456 161 243 219 329 262 627 223

R2 89.1 752 697 894 835 939 842 848 711 693

ET MAE 504 219 075 655 115 116 185 156 1.2 0.09

RMSE 122 827 497 148 225 213 332 280 6.08 158

R2 914 721 652 911 859 942 839 826 731 697

SPEI6 XGBoost MAE 207 202 116 101 192 893 961 0.29 0.5 2.4
RMSE 121 354 271 250 359 207 204 429 352 107

R2 79.2 837 915 89.7 858 910 902 809 905 879

RF MAE 236 157 909 752 148 504 638 033 052 216

RMSE 135 326 258 240 329 172 186 491 397 121

R2 741 861 923 906 881 938 918 779 881 848

ET MAE 236 181 945 831 154 546 755 045 076 282

RMSE 117 319 229 221 314 158 185 492 455 120

R2 80.3 867 940 920 892 948 919 787 848 850

For SPEI 3, the XGBoost model demonstrated an overall precision with R2 ranging
from 63.24% to 92.47%, RMSE spanning from 1.35% to 34.11%, and MAE
fluctuating between 0.07% and 19.9%. Similarly, the Random Forest model exhibited
R2 ranges of 69.38% to 93.98%, RMSE varying between 2.23% and 32.93%, and
MAE spanning from 0.12% to 16.7%. Moreover, the Extratrees model showcased R2
ranges from 65.26% to 94.28%, RMSE spanning 1.58% to 33.28%, and MAE
fluctuating between 0.09% and 18.55%.

For SPEI 6, the XGBoost model demonstrated an overall precision with R2 ranging
from 79.23% to 91.59%, RMSE spanning from 3.52% to 35.97%, and MAE varying
between 0.29% and 20.27%. Likewise, the Random Forest model displayed R2 ranges
from 74.19% to 91.59%, RMSE fluctuating between 3.97% and 32.95%, and MAE
spanning from 0.33% to 15.79%. Additionally, the Extra Trees model showcased R2
ranges from 78.73% to 94.8%, RMSE ranging from 4.55% to 31.93%, and MAE

varying between 0.45% and 18.14%. showed overall accuracy in Figure 13.



80€608YTLT

21 thes / tei00t0t 89522001 taver / stseun seootsse stssuxt naa I[NNI

44

In conclusion, the Extra Trees model emerges as the most promising candidate for
drought index prediction in the Northeast region of Thailand, demonstrating
competitive performance across various metrics and datasets. The analysis, aimed at
assessing the congruence between predicted and observed values, consistently
performed across various metrics. For both SPEI3 and SPEI6, the correlation
coefficients (R values) ranged from 65.26% to 94.28% and 78.73% to 94.8%,
respectively, indicating the model's ability to capture the nuances of drought
dynamics. This proficiency not only elucidates the model's discernment of the relative
significance of pertinent drought variables but also indicates its reliability in
forecasting. The Root Mean Squared Error (RMSE), serving as an indicator of
predictive capability, exhibited low values spanning from 1.58% to 33.28% and
4.55% to 31.93% for SPEI3 and SPEIG6, respectively. Such minimal RMSE values
signify a close relationship between predicted and observed values, meaning that
prediction errors were comparatively low. Likewise, Mean Absolute Error (MAE)
ranges of 0.09% to 18.55% and 0.45% to 18.14% for SPEI3 and SPEIG, respectively,
further indicate the model's accuracy, with lower MAE values indicating performance
in predicted and observed values. Moreover, this study uses cross-validation for a
model assessment approach that effectively mitigates the risk of overfitting the
training data. the ETR model used to generate drought distribution maps in the
Northeast region of Thailand. Its performance and accuracy make it a compelling
choice for further research and practical applications in drought assessment and

monitoring.
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4.2.2 The Importance of Variables
This study investigates the influence of remote sensing and ground observation
variables on the estimation of SPEI 3 and SPEI 6 scales spanning from 2014 to 2023.
The variables impact was assessed through model influence and permutation
importance calculation, enhancing the comparability of these variables, and revealing
correlations among all selected parameters. The prioritization factor of three models is
illustrated in Figure 14 indicating the significance of these variables across different

modeling approaches.

SPEI 3 importance values from 2014 to 2023 reveals notable patterns across the three
models. In the XGB model, CHIRPS emerges as the most critical variable,
constituting 35.13% to 61.85% of the total importance, followed by DEM (20.09% to
29.74%), TCI (1.94% to 18.88%), EVI (2.50% to 12.15%), and VCI (3.36% to
11.64%). Similarly, in the RF model, CHIRPS remains paramount, ranging from
34.88% to 66.85%, followed by DEM (21.36% to 29.21%), TCI (4.55% to 19.26%),
EVI (2.30% to 14.32%), and VVCI (2.57% to 7.48%). The ETR model also emphasizes
CHIRPS (27.52% to 62.79%), DEM (19.65% to 30.33%), TCI (7.05% to 21.39%),
VCI (3.87% to 13.09%), and EVI (3.28% to 12.85%).

SPEI 6 importance values for the same period unveils consistent trends across the
models. In the XGB model, CHIRPS dominates (36.81% to 67.77%), followed by
DEM (13.83% to 33.83%), TCI (5.5% to 18.88%), EVI (3.01% to 13.58%), and VCI
(1.90% to 9.56%). Likewise, in the RF model, CHIRPS remains crucial (40.87% to
72.64%), followed by DEM (14.18% to 35.63%), TCl (5.22% to 15.86%), EVI
(2.42% to 13.20%), and VCI (1.87% to 6.49%). The ETR model highlights CHIRPS
(28.86% to 67.08%), DEM (18.86% to 37.32%), TCI (6.29% to 21.67%), EVI (3.83%
to 14.24%), and VCI (3.92% to 11.45%). Showed in Figure 14.

In conclusion, the study investigated the significance of remote sensing and
topography variables in accurately estimating the Standardized Precipitation
Evapotranspiration Index (SPEI) at both 3 and 6-month scales from 2014 to 2023.
Through permutation importance calculations, it enhanced the comparability of
variables and unveiled correlations among them. Across three models (XGB, RF, and
ETR), CHIRPS (precipitation data), elevation (DEM), and TCI (Temperature
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Condition Index) emerged as the most critical variables for both SPEI 3 and SPEI 6
estimations. While other variables like EVI (Enhanced Vegetation Index) and VCI
(Vegetation Condition Index) also held importance, they played secondary roles
compared to CHIRPS, elevation, and TCI. These studies examine the role of certain

variables in estimating SPEI, thus aiding water resource management and drought

monitoring.
SPEI3 P of XGBoost a) SPEI 3 Per of Random For ( ) SPEI 3 Per (C)
"Iu |||I| ||||| ‘Ln ‘llll " ||||| |||-| ‘“I ‘|I ‘l ||||| ||I.| ‘| ‘Lu ‘l ||| ||I |||| |||| ‘lln ||||| |||II ‘L. hlu || ||||| ||||| ||||I |||||
SPEI 6 Permutationimportance of XGBoost (d) SPEIG P ) SPEI 6 Per of Extratree (f)

thhhhMth LkL‘LkMth mhk\hhmmmm

Figure 14 The relative importance (%) of the drought factors for (a) XGBoost, (b)
Random Forest, (c) Extra Trees from SPEI 3 and (d) XGBoost, (¢) Random Forest, (f)
Extra Threes from SPEI 6

4.3 Mapping The Spatial Distribution Drought

The spatial distribution maps the definitive results of this study conducted Leveraging
the ETR model the creation of drought distribution maps in northeastern Thailand
over a period from 2014 to 2023. The region's topography predominantly consists of
the Korat plateau, characterized by extensive flat terrain. The terrain gradually slopes
from west to east, culminating in high mountains along the periphery of the area.
Predominantly rocky, the terrain also features vast plains, forming expansive basin
lands. The average annual precipitation stands at approximately 1,400 mm, with
temperatures ranging between 19.5°C and 36.1°C, delineating the climatic profile of

the region.

Trend long-term drought indicators SPEI 6 consistently exhibited a higher frequency
of area drought category compared to short-term indicators SPEI 3 This suggests the

cumulative impact of prolonged precipitation deficits on drought occurrences.
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4.3.1 Short-Term Drought Occurrences
In this study, conducted an analysis of drought occurrences in northeastern
Thailand. the occurrences of short-term light droughts in 2014, predominantly
impacting Ubon Ratchathani (UBN), which reappeared in 2017, followed by a
more extensive influence across the study area in 2018. Additionally, moderate
drought conditions were discerned in Buriram (BRM) during this timeframe,
persisting through 2019. Extreme drought affected 0.47% of the total area,
severe drought impacted 0.56%, moderate drought affected 24%, and light
drought was observed in 45% of the entire area, as illustrated in Figure 16.
Noteworthy is the identification of light drought conditions in Sisaket (SSK) in
2019, alongside sporadic occurrences of moderate drought in Buriram (BRM).
Meanwhile, Ubon Ratchathani (UBN) experienced notable instances of
moderate drought, with Nakhon Ratchasima (NMA) notably afflicted by
extreme drought conditions. consistent with the data that the drought situation
in Nakhon Ratchasima (NMA) Province is still ongoing. The water volume in 4
large water storage reservoirs in the province continues to decrease. (Office of
Natural Resources and Environmental Policy and Planning). This trend
persisted into 2020 with a moderate drought in Nakhon Ratchasima (NMA) and
a light drought in Buriram (BRM) and Surin (SRN). Furthermore, similar

conditions were observed in 2021 in these areas. Showed in Figure 15.
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Figure 15 Short-term drought distribution map in the northeast Thailand
from 2014 — 2023

Area based on drought classes SPEI 3

Area (%)
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Figure 16 Area based on drought classes SPEI 3
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4.3.2 Long-Term Drought Trends

Trend long-term drought indicators (SPEI 6) consistently exhibited a higher
frequency in the area drought category. there was a slight occurrence of a
long-term drought in 2014, whereas 2015 witnessed a severe drought in
Ubon Ratchathani (UBN). This trend of moderate drought persisted through
2016 and 2017, In 2018, severe drought affected 0.47% of the total area,
while moderate drought encompassed 27% and light drought covered 51% of
the entire region. Notably, as illustrated in Figure 18. severe drought
exhibited a pronounced occurrence in the north of Buriram (BRM) during
2018, coinciding with instances of moderate drought in Nakhon Ratchasima
(NMA) and various areas within Surin (SRN). In 2019, the study area
experienced a prevalence of light drought affecting 83% of the total area,
accompanied by a moderate drought affecting 12%. Notably, a distinct area
comprising 1.4% encountered severe drought conditions, predominantly
observed in Surin (SRN).

Additionally, in 2020, drought conditions were observed in Nakhon
Ratchasima (NMA). as shown in figure 17. Significant insights were
garnered through the analysis of area percentages extracted from the drought
maps, indicating a notable increase in the affected areas across different
drought classes over extended time periods, specifically for SPElI 3 and
SPEI 6-month scales, as shown in figure 18. This observation implies that
prolonged periods of deficient precipitation contribute to the heightened
frequency of drought occurrences. Such a thorough examination underscores
the different distribution of drought events across various districts of
northeast Thailand throughout the period spanning 2014 to 2023. Showed in
Figure 17.
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Figure 17 Long-term drought trends distribution map in the northeast of Thailand
from 2014 — 2023
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4.4 Summary of Experiment and Result

In conclusion, the assessment of drought and analyzed using remote sensing and ground
observation data at a resolution of 30 meters using three machine learning algorithms XGBoost,
Random Forest, and Extra Threes. The purpose of this study is to analyze and investigate
various droughts and generate a drought map in the northeast of Thailand for the period 2014—

2023. The conclusions from this study are summarized as follows.

1) This study analysis the vital role of remote sensing and ground observation variables
spanning from 2014 to 2023. Utilizing permutation importance calculations, the study not only
enhanced the comparability of variables but also revealed intricate correlations among them.
Across three predictive models (XGBoost, Random Forest, and Extra Trees), the Extra Trees
model emerges as the most promising candidate for drought index prediction in the Northeast
region of Thailand, demonstrating competitive performance across various metrics and datasets.
precipitation data (CHIRPS), elevation (Digital Elevation Model), and temperature
(Temperature Condition Index) emerged as the most influential variables for estimating both
SPEI 3 and SPEI 6. Although variables such as the Enhanced Vegetation Index (EVI) and
Vegetation Condition Index (VCI) also contributed significantly, their roles were secondary
compared to CHIRPS, elevation, and TCI. These findings on the nuanced interplay of variables
in SPEI estimation, offer valuable insights for water resource management and drought

monitoring in the northeast of Thailand.

2) This study analysis both short-term and long-term precipitation patterns, utilizing the
Standardized Precipitation Evapotranspiration Index (SPEI) as a metric to gauge drought
conditions. Short-term observations revealed instances of drought, particularly notable in June
2015 and April 2016, with recurring drought conditions evident towards the end of 2018 and
2019, as well as at the onset of 2020 and 2021. These findings underscore the cyclical nature of

reduced precipitation and the consequential threat of water scarcity within shorter time frames.

Furthermore, this study investigation into long-term precipitation trends, evaluated over a SPEI,
revealed sustained negative SPEI values from mid-year 2015 to 2016, indicative of emerging
drought conditions. Notably, from mid-year 2018 to 2020, the persistent negativity of SPEI
values highlighted a protracted period of drought across multiple months, the severity and

duration of the drought.
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CHAPTER 5 CONCLUSION AND FUTURE WORK

5.1 Conclusion

RS technology has significantly advanced the field of mapping the spatio-temporal
dynamics of drought in Northeast Thailand. This area is situated within the tropical
zone, characterized by predominantly sandy soil that has a limited capacity to retain
water. The frequency and severity of droughts have increased, causing significant
damage to the agricultural and economic sectors, resulting in reduced crop yields and
hardships for farmers. The terrain is on the Korat plateau because most of it is a
plateau. This study the challenge of integrating remote sensing with ground
observation data to improve drought monitoring. Ground-based indicators offer
precision but limited spatial coverage, while RS indices cover larger areas with lower
accuracy. To solve this problem, machine learning algorithms were utilized to
combine sources of remote sensing data and ground observation. This approach
enhances spatial resolution and accuracy in drought monitoring in Northeast Thailand.

This study found patterns of drought occurrences, attributing them predominantly to
insufficient rainfall. Noteworthy drought events are observed in 2018, 2019, and 2020
for short-term droughts, and in 2015, 2016, 2018, 2019, and 2020 for long-term
droughts. These findings align with the recurring El Nifio phenomenon, which
typically induces diminished rainfall across the study area. Data from the Hydro-
Informatics Institute of the Ministry of Higher Education substantiate these
observations, accentuating the sustained presence of EI Nifio-induced drought
conditions from late 2014 through 2016 and a resurgence in 2019. The consistent
association between El Nifio occurrences and reduced rainfall highlights its pivotal

role in precipitating drought phenomena within the region.

This study analyzes the vital role of RS and ground observation variables spanning
the years 2014 to 2023, employing permutation importance calculations. Using three
machine learning models (XGBoost, Random Forest, and Extra Trees), it is revealed
that precipitation data (CHIRPS), elevation (Digital Elevation Model), and
temperature (Temperature Condition Index) are the most influential variables for
estimating both short-term (SPEI 3) and long-term (SPEI 6) drought indices. While
variables like the Enhanced Vegetation Index (EVI) and Vegetation Condition Index
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(VCI) also contribute significantly, their impacts are found to be secondary when
compared to CHIRPS, elevation, and TCI. These insights have implications for water

resource management and drought surveillance in northeast Thailand.

The spatial mapping of drought distribution in northeast Thailand from 2014 to 2023
was conducted using the Extra Trees model. Long-term drought indicators,
particularly SPEI 6, consistently demonstrate a higher frequency of area drought
categories compared to short-term indicators like SPEI 3. Analysis of short-term
drought events reveals temporal patterns, including predominant short-term light
droughts in 2014, with a resurgence in 2017 and expanded influence in 2018.
Moderate drought conditions persisted in Buriram (BRM) through 2019, while
significant instances of drought, ranging from light to extreme severity, were
observed across different areas, notably impacting Sisaket (SSK) in 2019 and sporadic
moderate droughts in Buriram (BRM). Substantial instances of moderate to extreme
drought were reported in Ubon Ratchathani (UBN) and Nakhon Ratchasima (NMA)
based on data from the Office of Natural Resources and Environmental Policy and
Planning. Long-term drought indicators (SPEI 6) consistently exhibited higher
frequencies, particularly notable in 2015 and 2018, affecting various parts of northeast
Thailand.

The main initiatives of the thesis are as follows:

(1) Applying fusion of drought index from the Landsat 8 satellite and ground
observations for the study area. It provides insights into environmental
parameters and precise meteorological measurements.

(2) Compared the performance of various ML models to identify the most
effective approach for drought monitoring in the study area.

(3) Explored spatiotemporal trends in drought distribution to inform water

management and mitigation strategies.

5.2 Future work and Suggestions
In summary, the results of the research can be used as a guideline in planning drought
and water management. Future research could benefit from integrating additional

data sources. Incorporating data from sources such as soil moisture measurements,



80€608YTLT

21 thes / tei00t0t 89522001 taver / stseun seootsse stssuxt naa I[NNI

55

groundwater levels, and land use and land cover data could provide a more
understanding of drought dynamics and improve the accuracy of drought prediction
models.

However, in reflecting on the findings presented in this study, it is to certain inherent
limitations. The study focused on the northeast Thailand, which warrants caution
when extrapolating the results to other geographical contexts. Variations in
environmental conditions, other factors, and land use practices across different

regions may influence the applicability and generalizability of the findings.

Furthermore, the choice of machine learning models, including XGBoost, Random
Forest, and Extra Trees, along with their associated parameters, introduces variability
in the outcomes observed. It is important to acknowledge that the performance and
efficacy of these models may differ in distinct geographic settings, owing to

disparities in data availability, topography characteristics, and climatic pattern.

Future research should extend the geographic scope, encompassing diverse regions
beyond northeast Thailand, to gain a more comprehensive of drought dynamics and
management strategies. Exploring alternative modeling approaches and incorporating
additional environmental variables could further insights into the complexities of
drought occurrence and mitigation efforts. Therefore, future research should be
conducted to extract the information with deep learning methods or neural network
and monitor the drought. remote sensing data and evaluating the impact of these data

changes on the regional environment.
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APPENDIX A
The information of Ground Observation data from Northeast of Thailand

NO STATION NAME LATITUDE LONGITUDE
1 407301 Ubonratchathani 15.2455 104.8711
2 407501 Ubonratchathani (Center) 15.2408 105.0195
3 409301 Srisaket 15.0869 104.3269
4 431201 Nakonratchasima 14.9699 102.0803
5 431301 Nakonratchasima (Pakchong) 14.6437 101.3159
6 431401 Nakonratchasima (Chokchai) 14.7396 102.1623
7 432201 Surin 14.8758 103.4939
8 432301 Surin (Agriculture) 14.8926 103.4466
9 432401 Surin (Tatoom) 15.3178 103.6767
10 436201 Buriram 15.2273 103.2422
11 436401 Buriram (Nangrong) 14.6326 102.7156
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APPENDIX B
The average monthly rainfall data from Northeast of Thailand
MONTH (MM)
NO STATION YEAR JAN FEB MAR  APR MAY JUN JuL AUG SEP OCT NOV DEC
1 407301 2013 1.1 0 417 95.3 199.7 1421 396.2 1157 502.1 80.4 4.6 66.3
2 407301 2014 0 8.4 0.1 123 54.1 7158 6648 162.6 4426 114.2 0 5
3 407301 2015 0 18.6 0.2 7.4 94.4 157.2 3141 180.6 2715 1975 17.6 0
4 407301 2016 4.8 0 0 60.7 216.1 4947 185.1 155 3479 105.3 4.8 14
5 407301 2017 0.4 0 63.9 69.4 3432 2852 488.9 233 153.8 79.7 7 0.4
6 407301 2018 0 15 72.4 51.4 166.3 3528 398.2 3774 387.7 96.4 14.9 12
7 407301 2019 0 9.5 12.6 9.5 249.8 77.5 2526 350.1 508.7 53.4 17.4 0
8 407301 2020 0 0 1.2 29.1 1242 2015 2372 2022 3474 1828 1.4 0.1
9 407301 2021 0 25 3.9 46.1 1394 2579 2631 2411 347 186.7 0 6.1
10 407301 2022 31 29.5 60.8 160.3  386.2 61.7 292.7 3885 666.7 1655 34.2 0
11 407301 2023 7.7 48 0 37.1 2316 2181 335 189.2 197.9 37.6 10.5 15
12 407501 2013 0.7 0 37.2 45.2 322.3 75.8 461.2 1648 488.1 86.9 5.4 111
13 407501 2014 0 0 0.9 84.6 102.6 5639 630.7 196.5 218 80.1 0 3.6
14 407501 2015 0 42.1 5 28.9 98.6 2275 288 186.9 210.7 206.4 35.8 0
15 407501 2016 R515) 0 1.2 40.4 2432 5239 265.2 173 520.4 93 13.4 6.6
16 407501 2017 0.6 0.2 43.9 109.8 3622 258.6 4371 3163 1529 1013 10.5 15
17 407501 2018 0 0 140 98.8 1705 2911 3095 3154 317 77.3 11.1 0.9
18 407501 2019 0 0 19.5 91.4 236.3 102 3185 3419 5545 26.6 7 0
19 407501 2020 0.9 0 1.4 55 2148  163.2 242 283.1 4394 1947 0.4 0.2
20 407501 2021 0 7.3 8.2 87.1 127.7 261 360.8  295.2 375 231.3 0 4.7
21 407501 2022 2 42.2 70.3 1348 3479 46 429.1 557.2 6539 1415 25.6 0
22 407501 2023 35.7 0 0 29.3 1054 3426 4751 300.6 205.7 1353 14.8 12
23 409301 2013 0.3 0 9.8 116.6  188.7 197.1  268.7 89 546.8 73.4 55) 46.3
24 409301 2014 0 0.3 0.5 10.9 33.3 288.2 2626 1902 2794 76.6 0 53
25 409301 2015 0 53.5 7.3 23.1 66.7 188.9 4909 1882 256.1 84.8 23 0
26 409301 2016 0 0 0 12.5 1338 3674 1836 1474 3071 1357 22 11
27 409301 2017 0.5 8.9 59.8 33 434.5 66.9 410 342.6 165 131.8 10.1 0.3
28 409301 2018 15 8.5 66.1 445 154 96.1 358.2 2943 338 60.7 13.6 0.1
29 409301 2019 0 0 1.8 78.7 2453 119.6 1569 187.2 3644 41.3 7.3 0
30 409301 2020 1.8 0 2.8 66.3 143 146.8 269.8 2683 3968 276.7 0.1 0
31 409301 2021 0 1 1 37.6 1554  140.2 197.3 150.7 4455 249 0.1 4.1
32 409301 2022 0.3 10.3 60.6 81.3 237.3 102.7 3109 2342 510.2 119 21.8 0
33 409301 2023 38.4 0.9 1 75.7 165.7 303.7 4418 4415 2928 180.8 4.6 1.2
34 431201 2013 4.1 0 33.6 19.7 51.6 61.4 2609 1678 3556 3217 29.3 0.3
35 431201 2014 0 2.7 27 83.8 194.3 53.9 98.7 226 219.9 56.1 13.9 0.4
36 431201 2015 0.9 17.2 47.1 26.6 74.1 92.1 2427 278,66  284.2 87 17.3 33
37 431201 2016 38 0 0 16.1 87.8 77 231.2 1542 3292 1188 37.8 0
38 431201 2017 6 0.1 245.6 13.4 2209 2804 1029 2964  350.6 97.8 28.2 10.5
39 431201 2018 2.6 78.5 28.5 1409 1221 95.8 149 87 139.1  106.8 7.9 4.1
40 431201 2019 0 133 14 21.2 102 54 40.7 155.7 157 85.4 6.8 0
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MONTH (MM)

NO STATION YEAR ~JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
41 [ 431201 2020 0 0 345 369 2113 23905 1479 2361 2659 2822 27 0
42 | 431201 2021 0 132 196 2299 752 372 2019 792 2675 2422 O 38.1
43 | 431201 2022 19 81 674 943 2427 837 2433 1252 307.8 1092 638 0
44 | 431201 2023 368 27 09 07 1076 2799 1989 1729 1959 1694 56 12
45 | 431301 2013 463 205 138 915 808 1508 59.7 1963 3796 2663 67 07
46 | 431301 2014 0 05 624 1077 1394 437 528 2051 974 769 788 136
47 | 431301 2015 11 206 1324 566 541 785 64 85 2619 1155 442 681
48 | 431301 2006 367 0 239 249 472 1321 1041 749 158 1056 567 0
49 | 431301 2017 32 93 1969 718 2324 1101 1751 1497 1622 2681 155 57
50 | 431301 2018 551 412 227 1128 3437 1216 783 2766 1502 108 0 1204
51 | 431301 2019 0 66 237 1464 1261 1298 1204 1657 2331 111 B84 0
52 | 431301 2020 0 0 584 955 1328 1028 1079 669 3664 2126 55 0
53 | 431301 2021 0 6.9 9 1687 1003 436 1409 1094 2911 1384 23 0
54 | 431301 2022 36 1041 1393 289 1553 1065 2609 1731 3483 368  96.7 0
55 | 431301 2023 4 141 09 123 553 76 544 722 1496 3802 57.5 156
56 | 431401 2013 93 75 227 1176 932 923 2292 119 3874 30L4 252 48
57 | 431401 2014 0 02 35 279 51 207 1113 17L.7 2317 2036 781 35
58 | 431401 2015 276 11 441 702 725 1056 1387 1009 2748 1708 313 07
50 | 431401 2006 337 0 0 456 1023 2072 1753 74 1706 1652 297 0
60 | 431401 2017 91 03 1118 418 2344 1985 677 1824 482 1569 429 109
61 | 431401 2018 11 429 13 1414 1656 766 933 1101 1485 676 347 79
62 | 431401 2019 0 1 2 570 259 576 603 1135 1472 107 23 0
63 | 431401 2020 0 0 321 501 1702 1265 1152 1981 1671 3153 33 0
64 | 431401 2021 0 193 44 1336 82 683 1372 1936 3901 2443 58 687
65 | 431401 2022 01 379 915 1203 984 552 2257 2002 2228 1314 1717 01
66 | 431401 2023 0 568 116 1294 1818 309 66 62 256 1495 0 0
67 | 432201 2013 35 134 66 306 1725 2345 2466 1721 5919 997 96 273
68 | 432201 2014 0 0 06 482 1713 1372 2572 3517 1627 1635 94 21
69 | 432201 2015 01 214 346 1228 1256 112 3224 2102 2585 412 98 0
70 | 432201 2016 16 0 0 275 1464 1931 2612 323 2548 1358 484 0
71 | 432201 2017 39 24 94 195 3419 1514 3423 2586 1528 1196 237 15
72 | 432201 2018 173 0 645 489 2063 1721 1096 1837 2452 553 179 43
73 | 432201 2019 0 75 266 498 1472 1019 2271 3265 2854 191 31 0
74 | 432201 2020 01 0 19 9 1189 242 1583 2093 394 1723 44 0
75 | 432201 2021 0 467 329 1141 2406 2024 1409 1438 2539 3184 334 0
76 | 432201 2022 1 715 1872 1426 2707 2006 2397 3281 6763 949 436 0
77 | 432201 2023 164 323 32 747 1275 888 225 1521 956 2534 94 16
78 | 432301 2013 73 282 26 278 208 173 231 1341 3557 858 44 25
79 | 432301 2014 0 2 5 762 1157 1219 2865 240 2201 2019 901 0
80 | 432301 2015 18 74 53 305 1786 500 2627 2168 2897 1199 309 01
81 | 432301 2016 04 0 0 45 201 1806 3096 1858 287.1 945 48 0
82 | 432301 2017 28 16 1084 178 2999 1957 3342 2412 1539 1529 15 14
83 | 432301 2018 135 0 244 871 1767 118 1692 1686 2407 209 37 7.1
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MONTH (MM)

NO STATION YEAR ~JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
84 [ 432301 2019 0 156 174 1473 1629 1025 2132 3561 3487 656 19 0
85 | 432301 2020 06 0 63 506 532 2387 1465 1505 2813 161 48 0
86 | 432301 2021 0 229 118 66 2145 2126 1626 1668 2687 2617 168 0
87 | 432301 2022 0 779 1216 1848 2141 144 2453 3054 6515 866 445 0
88 | 432301 2023 08 47 94 959 172 2417 1694 279 943 1319 0 0
89 | 432401 2013 0 0 133 1131 1193 1446 1708 2921 3556 639 16 204
90 | 432401 2014 0 0.1 27 601 675 2382 271 2131 1518 51 14 15
91 | 432401 2015 0 95 688 306 807 751 222 2042 2173 1334 205 0
92 | 432401 2016 272 42 0 937 1563 2664 2654 1084 2568 1411 417 0
93 | 432401 2017 0 45 537 8.2 1947 1103 3581 1646 1898 749 122 02
94 | 432401 2018 15 01 461 568 232 1549 2326 1277 1855 0 7 0
95 | 432401 2019 0 21 222 1131 1726 374 1307 3713 3045 323 18 0
96 | 432401 2020 01 0 192 383 499 837 1566 262 252 1791 O 0
97 | 432401 2021 0 306 0 96.7 1897 1655 132 969 3727 1241 0 0
98 | 432401 2022 46 235 489 754 765 914 1999 1442 3511 1386 371 0
99 | 432401 2023 11 74 119 67 169 2996 1027 2023 1297 1076 176 14
100 | 436201 2013 368 0 162 762 2429 1234 1755 260 3025 1112 31 09
101 | 436201 2014 0 02 171  6L5 952 2123 3354 2527 1405 851 6.2 0
102 | 436201 2015 0 213 51 415 1211 433 3123 1617 2086 1002 142 0
103 | 436201 2016 144 07 0 627 1974 1518 1772 1954 382 1056 835 0
104 | 436201 2017 37 263 899 346 3735 2542 3385 3579 2663 763 17 23
105 | 436201 2018 0 0 39.8 658 1567 478 1369 1116 214 35 218 22
106 | 436201 2019 0 0 301 1151 2933 1702 1269 2173 2188 87.2 28 0
107 | 436201 2020 5.2 0 349 46 503 2128 1579 1641 307.8 2828 4.2 0
108 | 436201 2021 0 78 52 697 1455 1309 185 1675 2836 2165 3.7 0
109 | 436201 2022 75 25 845 2027 2341 1426 4756 3494 4178 1285 413 0
110 | 436201 2023 5.4 0 32 216 562 1148 2334 152 148 1009 O 0.9
111 | 436401 2013 0 32 111 1042 1367 72 2251 1427 2538 2907 193 02
112 | 436401 2014 0 3.4 20 181 1748 704 1304 3159 2094 2095 6 9.7
113 | 436401 2015 29 106 457 1025 586 823 1518 2066 3246 1778 232 08
114 | 436401 2016 152 0 8.4 74 1498 1849 3111 1962 1993 122 381 02
115 | 436401 2017 18 17 1046 674 2185 989 2383 2686 1414 801 239 79
116 | 436401 2018 41 65 703 92 1502 647 448 898 1801 278 128 08
117 | 436401 2019 0 38 09 759 1629 50 654 1572 2226 863 43 0
118 | 436401 2020 0 24 728 95 165 1003 337 2246 3081 2956 212 02
119 | 436401 2021 0 228 184 3344 130 694 2344 105 3506 2828 7.4 0
120 | 436401 2022 08 716 136 180 3844 1418 4192 2128 3921 1414 944 0
121 | 436401 2023 8.7 1 104 626 1338 2506 1326 1562 2159 103 116 05
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The monthly maximum temperature data from Northeast of Thailand
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MONTH (CELSIUS)

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
1 407301 2013 35 39.3 39.5 41 375 37.2 355 35 35 34.4 35 34

2 407301 2014 339 35.8 39.8 39.5 39.8 38.2 35 35.8 35.4 35 359 352
3 407301 2015 349 37.6 384 42.4 39.8 40 385 36.5 355 35 35.6 36.5
4 407301 2016 35.8 375 40.1 423 40.5 37 355 35.2 348 355 36 35

5 407301 2017 344 38.2 395 40.3 38 36 338 36.3 359 341 36.5 344
6 407301 2018 36 37.4 39 40.5 375 35.1 35 34 355 35.8 35.2 36

7 407301 2019 355 38 40.3 40.7 40.9 38 36.2 34.6 34.2 36 34.5 353
8 407301 2020 36.8 38 40.7 40.7 40.3 37 36 35.6 35 337 354 34.8
9 407301 2021 35.7 38.6 40.4 40.3 39.1 38.7 36.8 35.6 35.1 34.7 355 34

10 407301 2022 36 36.7 39 38.2 35.6 37.2 35.8 354 355 34 36.7 345
11 407301 2023 33.9 36.9 40.2 40.8 415 36.6 35.6 36 34.4 35.7 33.8 34

12 407501 2013 34.6 38.3 39.4 40.6 38.3 374 35.8 36.5 34.3 341 34.9 33.8
13 407501 2014 342 35.9 39.8 39.4 39 38.6 35.2 35.8 35.6 345 35.2 35.2
14 407501 2015 353 36.7 375 415 417 39.8 38 36.3 35.7 353 354 35.7
15 407501 2016 353 37.6 40.2 42.6 40.5 37 35.7 355 34.3 35.2 353 36.7
16 407501 2017 349 38.1 39.2 39.7 38 36 345 36.1 35.7 343 358 344
17 407501 2018 36.7 374 38.8 39.1 37.4 354 35.7 34.1 35.1 35.9 35.1 36.2
18 407501 2019 355 38.4 39.8 40.6 40.1 37.7 36.4 35 338 35.6 348 34.8
19 407501 2020 36.7 37.1 40.4 40.4 39.4 37.7 36.3 355 34.7 337 35.2 34.4
20 407501 2021 351 38.2 39.8 38.9 390.1 39 36.6 36.2 34.8 339 353 331
21 407501 2022 35.7 36.1 38.5 38.4 36.3 37 35.6 35.1 35 344 355 342
22 407501 2023 345 37.1 40.2 41.2 40.7 36.5 36.5 353 339 345 34 34

23 409301 2013 345 37.8 39.6 39.7 38.4 36.5 355 335 34.3 332 34.9 323
24 409301 2014 335 355 39.3 395 40.2 38 34.8 351 345 34 354 34

25 409301 2015 345 36.6 37.8 421 39.2 40.5 385 355 35.4 34.6 35.2 35.2
26 409301 2016 351 37 40.5 423 40 375 353 34.8 33.6 344 345 344
27 409301 2017 34 375 39 39.8 37.9 35 33.6 355 35 331 35.8 33.6
28 409301 2018 35.6 37 375 40.3 37.6 355 34.8 331 35.4 353 34 35

29 409301 2019 345 38 39.3 40.5 39.9 38.1 37.6 34.8 34.6 36 34.6 35

30 409301 2020 36.3 373 40.5 40.1 40.5 37.6 36.4 353 34.8 33.8 35 34

31 409301 2021 34.6 384 39.8 40 38.3 38.5 38 36.4 339 342 34.6 325
32 409301 2022 353 36.2 39.3 38.2 36 36.5 35 345 34 33 349 338
33 409301 2023 342 37.9 40.1 40.1 41 37 355 35.8 35 341 329 33

34 431201 2013 345 37.9 40.6 41 39.8 37.2 37 35.2 31 34.6 343 317
35 431201 2014 33.6 36.4 39.6 39.5 38.2 38.3 38.4 37.7 35.8 34.6 35.7 35.9
36 431201 2015 353 375 38.4 415 39.3 40.3 38.2 372 355 34.8 36.3 35.8
37 431201 2016 36.4 373 415 43.2 41.8 38.2 37.3 36.5 35 34.8 338 33.6
38 431201 2017 34 384 39.6 39.1 385 36.2 35 35.9 35.4 353 355 349
39 431201 2018 36.6 37.6 38.2 39.4 37.1 36.1 359 35.1 36.2 36.1 332 35.9
40 431201 2019 342 38.8 40.3 41.9 41 39.7 385 36.7 34.6 35.8 35.1 35.6
41 431201 2020 37 38.4 41.2 411 40.1 38.8 37.7 36.8 35.7 33.8 34.6 35
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MONTH (CELSIUS)

NO STATION YEAR  JAN FEB MAR  APR MAY JUN JUL AUG SEP OCT NOV DEC
42 431201 2021 34.8 38.7 40.1 39.2 38.2 38.7 39.7 38.3 34.9 35.1 35 32.3
43 431201 2022 36.6 35.8 38.8 38.8 36 36.5 36.4 35.5 35 335 34.7 313
44 431201 2023 35.1 36.8 40 41.2 41.6 38.7 374 39.1 348 345 30.7 30

45 431301 2013 34 35.9 37.2 385 36.7 33.2 329 32.1 33 32 32 30.4
46 431301 2014 33 34.1 36 36.4 35.6 35 35 33 331 32.6 33 32.1
47 431301 2015 33.8 355 36.3 38.1 36 37.7 353 34.6 329 32.7 33 345
48 431301 2016 32.9 35.2 37.9 38.9 39 36.5 335 33 324 32.1 32.6 32.6
49 431301 2017 33.1 35.2 36.6 36.7 35.6 334 322 34 331 32 32.8 33.1
50 431301 2018 33 35.6 35.2 35.6 34.2 32.8 321 31.2 331 333 329 33.1
51 431301 2019 333 35.9 37.8 38 36.7 35.1 34 31.7 325 34.9 33.9 34

52 431301 2020 35.5 35.1 38.8 38 36.1 35.8 345 34.4 334 315 329 32.9
53 431301 2021 32.9 36.1 36.4 371 34.9 35.9 36 33.2 331 32 324 31.6
54 431301 2022 33.9 34.2 36 36.2 33.7 33.6 331 33 325 313 323 30

55 431301 2023 32.8 34.6 36.7 38.6 36 35.4 35.6 34.5 32.7 32.1 31 31

56 431401 2014 345 36.2 39 39.2 385 38.5 37.7 36.2 348 34.6 34.7 334
57 431401 2013 35.6 37.6 40 40 38.5 36.8 36.2 35.2 34.7 33.6 35.3 32

58 431401 2015 34.7 37.8 39 40.7 39 39 37.9 36.9 35.6 34.6 35.1 35.9
59 431401 2016 36.1 37 41.2 425 40.7 37.6 37 36.9 35.5 35 34.9 34.4
60 431401 2017 34.5 38 39.6 39 39 35.8 35.6 36 36.2 34.2 35.1 34.5
61 431401 2018 35.7 37.7 38.1 39 37 36 35.7 35.2 36 36.5 335 35.9
62 431401 2019 34.5 38.7 40.1 40.6 40.3 38 37.5 36 35.2 35.7 35.2 35.7
63 431401 2020 37.2 37.9 40.6 40.8 39 38.8 37 36 35.7 34.3 35.7 34.7
64 431401 2021 34.6 38 39.5 39.7 38.2 38.8 38 36.8 35 35.3 35.3 33.2
65 431401 2022 35.7 35.3 38.2 38.8 35.7 37.5 36 35.2 34.8 334 34.3 32.2
66 431401 2023 34.8 36.6 39.7 40.2 40.2 37.4 37.2 37.2 35.4 34.5 32.5 31

67 432201 2014 33.9 35.5 39.2 38.7 37.8 37.4 35.7 35.4 34 33.6 34.6 33.2
68 432201 2015 34.6 36.6 37.5 41.3 38.4 39.2 37.9 35.7 34.8 34 35.3 35.9
69 432201 2016 35.4 37 40 42 40.8 37.8 35.8 35.5 34 35.1 34.3 33.8
70 432201 2017 34.4 37.9 39.1 38.8 39 35.6 34.5 35.4 35.5 33.8 36.2 34

71 432201 2018 35.4 37.3 38.8 39.2 38.8 35.7 35.1 34.2 35.9 35.7 34 35.6
72 432201 2019 34.5 38.2 39.7 40.8 40.7 38 37.4 35.9 34.1 34.8 35.5 35.1
73 432201 2020 36.4 374 40.1 40.5 415 37.5 36.5 35.6 35.5 33.5 34.8 34.3
74 432201 2021 34.9 37.6 39.5 39.2 37.8 37.5 37.4 36 34.5 35.5 34.8 32.3
75 432201 2022 35.8 35.7 38.4 38.5 35.3 36.2 35.7 34.8 34.3 33.1 35 33.7
76 432201 2023 34.1 37.2 40 40.6 41 37 36 35.7 35 34.8 33 32

7 432201 2013 35 375 39.7 40 38.6 36.7 35.4 33.8 33.9 33.3 34 33.3
78 432301 2014 33 36.2 38.5 38.5 38.5 37.8 35.5 355 35 33.8 34.2 33.2
79 432301 2015 34.6 36.2 37.6 41.6 38.5 38.8 38.6 35.7 35.5 34.7 35.3 35.7
80 432301 2016 35.3 37.4 41.3 43.3 41.2 37.8 36.2 36.2 34.7 34.8 34.5 34.1
81 432301 2017 34.2 37.8 38.8 39.7 39.1 36.2 33.9 35.2 36.3 33.6 35.6 34.1
82 432301 2018 35.5 37.3 39.4 40.7 37.7 35.8 35.3 34.5 35.7 35.8 34.7 35.8
83 432301 2019 35.3 38.6 41 39.9 40.7 38.5 37.7 36 34 35.6 35 34.9
84 432301 2020 36.5 38 40.8 41 42 39 37.6 36.4 36.5 34 35.2 35
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MONTH (CELSIUS)

NO STATION YEAR  JAN FEB MAR  APR MAY JUN JUL AUG SEP OCT NOV DEC
85 432301 2021 35.2 38.5 40.2 40.3 39.1 38 37.2 36.7 345 36.2 35 33

86 432301 2022 36.3 36.2 38.7 39.2 36.7 36.5 36 35 345 335 35 33.6
87 432301 2023 345 37 40 40.5 41.4 375 36.1 36.3 36 34.8 33.2 33

88 432301 2013 35.2 37.7 40.8 415 395 36.7 35.8 34.2 341 33.8 345 33

89 432401 2014 335 36.7 38.9 38.7 38.7 38 35.8 35.1 35 34 345 338
90 432401 2015 345 37.3 37.6 415 39 39.1 39.2 37.2 355 335 35.2 35.8
91 432401 2016 35 36.3 40.3 42 39.8 37 35.8 34.8 345 33.8 34.2 33.9
92 432401 2017 34 36.4 37.2 38.6 373 35.1 339 35.4 345 33.8 34.2 33.2
93 432401 2018 345 36.4 38.4 38.6 37 35.6 35 34.3 35.6 35.6 335 35.2
94 432401 2019 343 37.8 39.5 40.3 40.2 38 38 36 34 34.6 34.6 34

95 432401 2020 36 37.2 40 40.2 415 37.2 36.1 36.2 35.6 34.1 34.8 34

96 432401 2021 34.8 37 39.2 395 38 37 37 36.3 35 33.8 34 32

97 432401 2022 35.1 35 37.7 37.8 345 36 35.2 34 34.2 325 34.4 325
98 432401 2023 34 37 39.8 40 40.5 37 36 35.5 345 345 318 33

99 432401 2013 34.9 37.9 40.6 41.8 39.4 36.2 36.3 38.3 34.4 334 338 315
100 436201 2014 335 37.3 40 40.3 39.9 39 36 36 34.2 33.8 35 33.3
101 436201 2015 35 37 39 425 39.7 40.3 40.2 35.5 35 33.5 35.5 36

102 436201 2016 35.8 37 415 43.2 41 37.5 36 36.3 34 34 35.5 33.5
103 436201 2017 32.7 37 39.5 39.5 38 35.5 33.7 34.5 34.5 33 35 34

104 436201 2018 35 36.8 39 39.3 37 35.8 35.8 33.7 35.1 35 33.8 35.9
105 436201 2019 34.5 38.7 39.8 40.2 39.7 38.1 38.5 35.8 32.9 36.9 35 34.2
106 436201 2020 36 37 39.5 39.6 40.5 37.4 36.4 35 35.1 325 33.9 33.9
107 436201 2021 34.4 38.3 39.6 39.6 37.5 38 37.3 35.9 34.6 34.2 34.3 31.7
108 436201 2022 35.7 35.7 38.7 38.2 35.4 36 34.9 335 34 33.3 335 32.7
109 436201 2023 32.6 36.8 39.8 40.2 41.4 37.6 35.5 36.3 34.3 34.7 321 32

110 436201 2013 34.7 38.2 41.2 41.3 40.2 36.7 36 35 34.8 35.5 34 31.9
111 436401 2014 34.5 37 39.4 40.1 38.1 38 37 36 34.9 34.1 34.1 335
112 436401 2015 35 37.1 39.2 41.8 39.3 39.8 39.3 36.6 35.5 335 34.6 35.4
113 436401 2016 36.2 37.2 41.2 43 40.4 37.8 36.4 36.4 34.6 34.4 34.6 33.8
114 436401 2017 33.8 375 39.2 39 38.2 36 35.1 35.9 35.5 34 35.3 33.8
115 436401 2018 35.6 375 38.3 39.2 37.5 36.7 36.2 35.5 36.1 35.9 34.7 36.4
116 436401 2019 34.7 38.6 39.7 40.8 40.7 38.5 38.8 36.9 34.8 35.8 35.5 35.6
117 436401 2020 37.6 38 41 41.6 40.5 37.5 36.6 35.6 35.5 33.8 35.2 34.9
118 436401 2021 35.1 38.6 39.6 40 37.5 37.9 37.7 36.5 34.9 35.1 34.8 32.5
119 436401 2022 35 35.4 38.5 39 36.1 36.4 35.6 34.6 34.5 32.8 35 32.6
120 436401 2023 33.7 37 39.7 40.2 40.2 37.9 37.4 37 35.4 34.7 32.3 31

121 436401 2013 35.4 38 41.3 41.6 39.1 37.2 36.5 34.7 34.6 33.2 33.8 31.6
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MONTH (CELSIUS)

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
1 407301 2013 14.6 19 18.2 22.4 22.5 218 228 23.4 22.5 20 17.3 12.2
2 407301 2014 115 144 19 21.2 23 225 225 23.1 217 211 19 13.6
3 407301 2015 115 14 221 18.8 23.2 23 22.7 235 214 206 20.5 155
4 407301 2016 134 115 15.8 23.6 23.4 23.3 22 23.8 228 225 18.4 17
5 407301 2017 155 132 17 19.3 22.8 233 233 23 232 213 175 131
6 407301 2018 135 116 16 17 22.2 225 234 23.2 22 195 17.8 16.7
7 407301 2019 148 183 20.5 24.5 22.7 24 225 22.2 22 20.5 17.7 137
8 407301 2020 145 16 19 20.7 23 227 222 22.6 23 19 17.9 14
9 407301 2021 9.5 13.8 18.9 22.6 22.5 229 217 22 23 20 18.2 155
10 407301 2022 165 147 19.8 17.6 18.7 224 227 22.3 22.4 18.5 15.8 13.8
11 407301 2023 13 15.2 175 23.4 23.2 228 231 22.7 227 222 22.2 22
12 407501 2013 144 195 19 235 23 227 229 23.4 22.8 20 17.6 12.4
13 407501 2014 121 155 19.8 21.9 23.6 228 232 235 226 219 19.4 14.2
14 407501 2015 126 151 22.8 20 24.2 237 228 235 214 215 20.6 151
15 407501 2016 13 115 16.3 23.8 23.8 23 22.8 235 229 232 18.6 16.9
16 407501 2017 173 1438 17.7 19.5 23 235 235 23 236 201 17.7 12.2
17 407501 2018 141 1138 16.4 17.2 23 224 236 235 22.4 19.6 18.6 16.9
18 407501 2019 164 195 22.6 23.4 22.9 246 227 22.8 22.8 21 18.8 13.7
19 407501 2020 147 165 21.9 20.8 235 23.8 23 23.2 23.3 19.5 18 14.2
20 407501 2021 105 146 19.3 23.4 22.7 22.9 22 23 23 20.1 18.4 15.6
21 407501 2022 172 145 20.5 18 18.8 23 23.2 22.6 22.8 18 16.8 14.2
22 407501 2023 136 1538 18.2 23.9 23.8 237 235 23.3 231 229 23 22
23 409301 2013 14.9 19 18.9 22.9 235 23 22.9 23.7 23 21 17.7 12.6
24 409301 2014 11.9 14 20.2 22.8 24 23 23.2 23.2 234 223 19.4 143
25 409301 2015 122 152 225 20.1 245 24 23.2 22.9 22 21.7 21.1 15.9
26 409301 2016 12 114 16.6 24.6 23.1 236 226 23.8 23 22.8 18.7 16.9
27 409301 2017 152 152 175 19.1 235 238 236 22.5 23 20.2 175 125
28 409301 2018 138 121 16.5 17.2 23.8 226 234 22.9 225 219 18.6 16.6
29 409301 2019 158 192 215 21.7 22.9 238 227 22 22.5 20 16.7 12.8
30 409301 2020 14.7 16 195 21.4 22.8 232 228 22.8 23 19.5 19.1 14
31 409301 2021 11.2 15 19.2 23.8 24.2 23.8 23 235 231 2038 19.2 16.1
32 409301 2022 177 1438 211 175 19.3 23 23.1 23 22.5 19.1 18.1 14.8
33 409301 2023 13.8 16 18.6 235 235 23.3 24 23 24 235 23.2 23
34 431201 2013 16.5 20 20.3 235 23.3 24.4 23 22.8 246 215 18.6 12.2
35 431201 2014 112 169 21.7 22.8 235 243 24 23.7 237 227 20.1 15.3
36 431201 2015 136 167 22.7 21.7 24.8 245 226 23.6 233 214 21.4 171
37 431201 2016 12 12.6 18.2 243 22.8 228 237 23.6 23 23.7 20 16.6
38 431201 2017 168 163 19.3 20.8 23.9 234 232 23.2 227 205 18.5 12.8
39 431201 2018 149 135 19.7 17.8 23.7 24 23.6 23.4 23 20.3 18.1 17.8
40 431201 2019 172 201 20.2 23.4 23.6 238 225 23.3 222 207 18.4 135
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NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC
41 431201 2020 174 175 22.9 23.1 23.2 23.1 24 23.4 233 19.2 19 14.4
42 431201 2021 12 16.7 20.6 23.1 22.3 246 235 23.2 22.6 20.5 19.3 16.3
43 431201 2022 177 162 21.9 16 18.9 228 237 22.7 22.8 18.4 175 155
44 431201 2023 141 162 19.6 23.8 235 242 242 245 243 23 23.9 22.8
45 431301 2013 144 185 19.2 20.5 22.7 214 224 21.6 21 19.4 18.1 115
46 431301 2014 10 15.7 18.4 21.7 21.9 23 23.4 21.6 215 19.9 18.4 15

47 431301 2015 13.6 16 20.4 20.5 22.3 227 215 22.4 215 195 20.6 16.3
48 431301 2016 106  10.6 175 21.7 22.2 227 224 21.9 22.1 21.2 19 15.6
49 431301 2017 16.9 155 18 20.5 22.3 21.3 22 22.1 215 21 175 12

50 431301 2018 14 135 17.8 19.1 21.6 218 226 21.8 20.7 21.1 17 175
51 431301 2019 155 184 0 215 22.4 22.6 21 0 20.3 19.3 15.9 12.7
52 431301 2020 17.4 17 20.2 21.7 21.6 225 214 22 21.4 175 18.7 14.8
53 431301 2021 10.5 16 19 215 21.8 216 215 215 213 19.9 19 134
54 431301 2022 164 168 20 14.8 18 214 216 211 215 175 15.7 14.1
55 431301 2023 126 145 16.6 21 22.1 226 223 22.2 23.1 21 22.6 21

56 431401 2013 154 194 19.6 22.2 235 233 235 22.9 22.5 21 175 115
57 431401 2014 106 154 21.5 222 24.3 24.5 24 23.2 23.3 22 18.7 13.9
58 431401 2015 13 155 22.5 20.1 24.5 235 23 235 22.9 20.7 20.6 16

59 431401 2016 118 113 16.5 235 22.7 221 235 24.3 23.2 22.5 19.3 15.7
60 431401 2017 157 154 18.3 20.5 23.1 235 23 23.7 234 20 17.6 10.9
61 431401 2018 13.7 127 19.7 17.7 23.5 23.7 235 23.4 22.7 22 175 17.2
62 431401 2019 154 189 19.7 234 23.6 234 225 24 22 19.6 17 12.3
63 431401 2020 165 165 22.6 23 22.8 235 235 23 23.1 19.5 17.7 135
64 431401 2021 108 16.7 19.7 229 22.7 239 234 235 22.2 20 18.1 14.8
65 431401 2022 169 157 21.7 155 18.2 226 233 23 22.4 18.5 16.2 14.2
66 431401 2023 135 161 17 23.7 235 24 24 24 235 22.7 22.7 21

67 432201 2013 15 18.7 20.3 23 24 226 234 22.9 22.8 20.2 17.1 12

68 432201 2014 11.7 156 20.7 219 235 23 23.5 23 23 21.7 18.7 14

69 432201 2015 128 155 22.3 19.8 21.5 226 219 21.2 20.6 19 19 13.6
70 432201 2016 9.7 8 16.5 24.2 235 235 236 235 234 231 18.6 155
71 432201 2017 159 148 18.7 20 21.7 233 225 23 22.3 19.9 17 115
72 432201 2018 13 11.8 16.9 17.1 235 24 23.6 23.6 22.9 19.6 18.3 15.9
73 432201 2019 14.5 19 22 22.7 22.6 228 222 22.8 22 19.3 17.9 11.6
74 432201 2020 14.5 16 21.4 20 21.6 213 213 21.5 21 17.1 16.3 111
75 432201 2021 109 165 18.8 23 23.1 23 23.2 23.3 22.8 19.9 17.6 14.7
76 432201 2022 17 14.6 21.9 15.6 18.3 23 23 22.3 22.2 17.7 16.4 13.8
7 432201 2023 12.7 158 18 22.8 23.4 234 238 22.3 22.8 22.3 22 21

78 432301 2013 14 18.5 18.7 23.2 23.8 227 237 23.2 23 19.8 16.8 10.9
79 432301 2014 10 12.8 20.2 215 23.2 235 232 23.2 22.8 21.3 18.2 13.7
80 432301 2015 115 15 22 20 23.2 23 22.5 22.5 21.9 18.4 18.5 13

81 432301 2016 €9 9.5 15 23.2 23.4 23 23 23 23 22.9 18 14.5
82 432301 2017 146 141 17.3 19.5 22 235 225 21.6 23 19.2 16 10.3
83 432301 2018 125 112 16.4 17 23 235 234 23.2 22.5 20.5 16 15.7
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84 432301 2019 142 175 15 22 235 235 223 23 215 18.8 16.5 10.7
85 432301 2020 14 15 195 20.4 215 225 216 21.8 21.4 16.5 15 10.8
86 432301 2021 9.5 14 18.4 22.9 225 22 22.2 22 21.4 18.3 16.2 135
87 432301 2022 156 145 20.6 155 18.5 232 227 22.9 22.2 19.1 16 135
88 432301 2023 125 152 17.2 23 23 236 238 23 234 225 22.1 215
89 432401 2013 15 18.9 20 22.9 23.4 232 229 22.4 225 20 17.2 12.2
90 432401 2014 10.7 1438 20 22 23.7 23 221 23.1 236 215 18.3 133
91 432401 2015 12 15.1 222 17.7 23 237 227 22.2 22.3 20 19.2 15

92 432401 2016 11 10.8 16.2 21.6 22 23 23.4 24 24 24 18.5 16.1
93 432401 2017 165 141 17.2 20 23 24.2 23 23.8 238 222 17.9 10.7
94 432401 2018 132 117 16.8 17.6 23.8 245 238 24 23.4 21 18.3 17.9
95 432401 2019 155 19 23.2 23.4 23.8 245 235 225 22 22.1 18.5 12.6
96 432401 2020 148 162 21 20.3 235 232 232 22.3 235 18.1 17.8 13

97 432401 2021 10.5 16 20 235 22 23.2 22 22 22 18.5 18.5 14.5
98 432401 2022 17 143 19.8 15 18.5 24 24 24 23 18.5 18 13

99 432401 2023 12.7 155 18.4 235 24 244 23 23 236 228 23.9 22.5
100 436201 2013 13 17.7 20 224 235 231 229 22.4 16.7 18.7 17 10.1
101 436201 2014 9 13 18 22 22.5 23 23 23 22 20.4 17 12.9
102 436201 2015 11.4 14 21.3 17.2 22 218 186 19.6 21 20 18.5 14.4
103 436201 2016 9.4 8.5 13.7 21 21.7 21 20 22 21 22 17.8 135
104 436201 2017 15 13 16.8 19 22.5 23.2 22 23 21.7 18.5 16 9.3

105 436201 2018 12 113 16.4 16 22.5 233 233 23 21.7 209 17.2 15.7
106 436201 2019 146 181 16.6 22 22.3 227 231 22.6 21.2 18.9 175 10.8
107 436201 2020 13.4 158 21.8 20.7 22.3 233 234 23.1 23.1 19.2 17.1 12.6
108 436201 2021 9.4 15.1 18.5 22.7 20.6 229 23 22.8 229 201 17.4 14

109 436201 2022 16.2 142 21 15.4 18 236 222 22.2 22.5 18.2 17.7 13

110 436201 2023 119 152 17.6 23 22.3 228 235 23 233 221 21.8 22

111 436401 2013 142 187 19.5 22.8 22.7 22.6 23 22.4 223 209 175 11.4
112 436401 2014 10.7 148 21.4 21.7 22.5 22.8 23 235 232 223 18.7 13.7
113 436401 2015 122 147 22.7 19.9 24.3 232 223 23 21 20.4 19.7 153
114 436401 2016 115 11 15.8 215 22.3 223 221 235 233 228 18 15

115 436401 2017 15 14.5 16.3 19.8 22.4 235 226 23 22.2 18.8 16.7 11.2
116 436401 2018 13.7 119 18.3 17.8 221 238 238 23.4 22.3 19.4 17.2 16.5
117 436401 2019 155 187 23.5 23 22.2 244 221 23.8 223  20.6 17.6 12.3
118 436401 2020 16 16.2 22.3 22.3 22.8 238 223 22.8 22.9 19 175 135
119 436401 2021 106 15.2 19.6 22.3 22.5 237 236 22.2 233 203 18.1 15.1
120 436401 2022 16.1 156 20.5 15.5 18.2 235 237 22.7 221 18 15.9 13.2
121 436401 2023 133 16 18.4 235 235 23.7 237 23.4 235 229 22.8 214
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