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ABSTRACT 

65910037: MAJOR: GEOINFORMATICS; M.Sc. (GEOINFORMATICS) 

KEYWORDS: drought, Machine learning, Random Forest (RF), Remote sensing 

  PHONGPHAT JAPHICHOM : MAPPING THE SPATIO-TEMPORAL 

DYNAMICS OF DROUGHT IN NORTHEAST THAILAND. ADVISORY 

COMMITTEE: ZHENFENG SHAO, Ph.D. PHATTRAPORN SOYTONG, Ph.D. 

2025. 

  

Drought, a globally significant natural disaster, imposes considerable 

economic and environmental impacts, severely impacting agriculture and socio-

economic systems annually. The frequency of global drought occurrences can be 

attributed to the impacts of climate change and human activities. This study aims to 

investigate the spatiotemporal dynamics of drought in Northeast Thailand by 

integrating remote sensing (RS) and ground observations with machine learning 

models. 

This study specifically focused on northeast Thailand. This area is situated 

within the tropical zone, characterized by mainly sandy soil that has a limited capacity 

to retain water. Therefore, effective water resource management and drought 

monitoring efforts are needed in northeast Thailand. 

The main contents of this thesis include: 

1) Investigation of spatio-temporal drought patterns (shorth term and long 

term) of the study area from 2014 to 2023 using ML modeling from Landsat 8 

satellite and ground observation data. 

2) Performance comparison of machine learning (ML) models for 

monitoring drought in Northeast Thailand. 

3) Mapping spatial distribution of drought events in the Northeast of 

Thailand from 2014 to 2023. 

This study leverages the fusion of RS and ground data to enhance drought 

monitoring. Ground indicators offer precision but have limited coverage, while RS 

indices cover larger areas with less accuracy. ML algorithms were used to combine 

these data sources, improving spatial resolution and accuracy. The study used five RS 

parameters such as The Vegetation Condition Index (VCI), The Enhanced Vegetation 

Index (EVI), The Temperature Condition Index (TCI), Topography, Precipitation, 
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combined with ground data as The Standardized Precipitation Evapotranspiration 

Index (SPEI). ML techniques, including XGBoost, Random Forest, and Extra Trees, 

assessed the relationship between variables. Additionally, cross-validation techniques 

were utilized to validate the model performance. The optimal model was used to 

generate a spatial distribution of drought, contributing to more effective drought 

management strategies, and enhancing drought dynamics in the region. 

The results demonstrate that the Extra Trees model is outperform for 

accurate drought index prediction. For short-term, the results show an R² ranging 

from 65.26% to 94.28%, an RMSE between 1.58% to 33.28%, and an MAE ranging 

from 0.09% to 18.55%. Similarly, for long-term, the results show an R² ranging from 

78.73% to 94.8%, an RMSE between 4.55% and 31.93%, and an MAE ranging from 

0.45% to 18.14%. In particular, the variables contributing to model accuracy include 

precipitation (27%-67%), topography (19%-37%), and land surface temperature (6%-

21%). The feature importance values of these variables enhance the model 

performance. The study examines both short-term and long-term precipitation patterns 

using the Standardized Precipitation Evapotranspiration Index (SPEI) to assess 

drought conditions. Short-term analysis identified significant drought occurrences in 

June 2015 and April 2016, with recurrent drought periods observed in late 2018 and 

2019, as well as the beginning of 2020 and 2021. These findings underscore the cyclic 

nature of decreased precipitation and the associated risk of water scarcity within 

shorter time frames. Moreover, long-term precipitation trends analyzed through SPEI 

indicated sustained negative values from mid-2015 to 2016, indicating the onset of 

drought conditions. Particularly noteworthy was the persistent negativity of SPEI 

values from mid-2018 to 2020, indicating an extended drought period spanning 

multiple months. indicating the severity and duration of the drought.  

The main initiatives of the thesis are as follows: 

1) Developed method that fuses the drought index using remote sensing 

(RS) data from the Landsat 8 satellite and ground observations. This provides insights 

into drought-related environmental parameters and precise meteorological 

measurements. 

2) Compared the performance of three ML models to identify the most 
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effective method for drought monitoring in the study area. 

3) Explored spatiotemporal trends in drought distribution to inform water 

management and mitigation strategies. 

In conclusion, the study provides a framework for strategic planning in 

drought management by integrating RS and ground observation data. Future work 

could explore deep learning or neural networks to enhance drought monitoring and 

understanding of regional environmental implications. 
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ABSTRACT 

Drought, a globally significant natural disaster, imposes considerable economic and 

environmental impacts, severely impacting agriculture and socio-economic systems 

annually. The frequency of global drought occurrences can be attributed to the 

impacts of climate change and human activities. This study aims to investigate the 

spatiotemporal dynamics of drought in Northeast Thailand by integrating remote 

sensing (RS) and ground observations with machine learning models. 

This study specifically focused on northeast Thailand. This area is situated within the 

tropical zone, characterized by mainly sandy soil that has a limited capacity to retain 

water. Therefore, effective water resource management and drought monitoring 

efforts are needed in northeast Thailand. 

The main contents of this thesis include: 

1) Investigation of spatio-temporal drought patterns (shorth term and long term) of 

the study area from 2014 to 2023 using ML modeling from Landsat 8 satellite 

and ground observation data. 

2) Performance comparison of machine learning (ML) models for monitoring 

drought in Northeast Thailand. 

3) Mapping spatial distribution of drought events in the Northeast of Thailand from 

2014 to 2023. 

This study leverages the fusion of RS and ground data to enhance drought monitoring. 

Ground indicators offer precision but have limited coverage, while RS indices cover 

larger areas with less accuracy. ML algorithms were used to combine these data 

sources, improving spatial resolution and accuracy. The study used five RS 

parameters such as The Vegetation Condition Index (VCI), The Enhanced Vegetation 

Index (EVI), The Temperature Condition Index (TCI), Topography, Precipitation, 

combined with ground data as The Standardized Precipitation Evapotranspiration 

Index (SPEI). ML techniques, including XGBoost, Random Forest, and Extra Trees, 

assessed the relationship between variables. Additionally, cross-validation techniques 

were utilized to validate the model performance. The optimal model was used to 
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generate a spatial distribution of drought, contributing to more effective drought 

management strategies, and enhancing drought dynamics in the region. 

The results demonstrate that the Extra Trees model is outperform for accurate drought 

index prediction. For short-term, the results show an R² ranging from 65.26% to 

94.28%, an RMSE between 1.58% to 33.28%, and an MAE ranging from 0.09% to 

18.55%. Similarly, for long-term, the results show an R² ranging from 78.73% to 

94.8%, an RMSE between 4.55% and 31.93%, and an MAE ranging from 0.45% to 

18.14%. In particular, the variables contributing to model accuracy include 

precipitation (27%-67%), topography (19%-37%), and land surface temperature (6%-

21%). The feature importance values of these variables enhance the model 

performance. The study examines both short-term and long-term precipitation patterns 

using the Standardized Precipitation Evapotranspiration Index (SPEI) to assess 

drought conditions. Short-term analysis identified significant drought occurrences in 

June 2015 and April 2016, with recurrent drought periods observed in late 2018 and 

2019, as well as the beginning of 2020 and 2021. These findings underscore the cyclic 

nature of decreased precipitation and the associated risk of water scarcity within 

shorter time frames. Moreover, long-term precipitation trends analyzed through SPEI 

indicated sustained negative values from mid-2015 to 2016, indicating the onset of 

drought conditions. Particularly noteworthy was the persistent negativity of SPEI 

values from mid-2018 to 2020, indicating an extended drought period spanning 

multiple months. indicating the severity and duration of the drought.  

The main initiatives of the thesis are as follows: 

1) Developed method that fuses the drought index using remote sensing (RS) data 

from the Landsat 8 satellite and ground observations. This provides insights into 

drought-related environmental parameters and precise meteorological 

measurements. 

2) Compared the performance of three ML models to identify the most effective 

method for drought monitoring in the study area. 

3) Explored spatiotemporal trends in drought distribution to inform water 

management and mitigation strategies. 
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In conclusion, the study provides a framework for strategic planning in drought 

management by integrating RS and ground observation data. Future work could 

explore deep learning or neural networks to enhance drought monitoring and 

understanding of regional environmental implications. 

Keywords: drought; remote sensing data; machine learning; Data fusion; XGBoost; 

Random Forest; Extra trees; 
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CHAPTER 1 INTRODUCTION 

1.1 Background  

Drought being a significant global natural calamity, incurs substantial costs and 

inflicts extensive damage on agriculture the environment and the socio-economic 

fabric annually (Bahta & Myeki, 2022). The monitoring and forecast of drought can 

assist policymakers in their response to drought situations (Fu et al., 2022). The 

occurrence of drought has become more frequent on a global scale due to the 

combined impacts of climate change and human activity. Typically, droughts occur 

both in a sequential and concurrent manner (X. Li, Jia, & Wang, 2023). The main 

factors contributing to drought include uneven and insufficient precipitation, along 

with insufficient rainfall distribution in specific areas (Carrillo et al., 2023). the 

primary impact of drought in Thailand is predominantly on the agricultural sector 

(Marks, 2011).  

Thailand located in Asia is very susceptible to fluctuations and shifts in climatic 

patterns (Sedtha, Pramanik, Szabo, Wilson, & Park, 2023; Shrestha, Chaweewan, & 

Arunyawat, 2017), as well as extreme weather events such as droughts and floods. 

The region of Northeast Thailand is situated within the tropical zone, characterized by 

predominantly sandy soil that has a limited capacity to retain water (Fujii et al., 2017; 

Suzuki, Noble, Ruaysoongnern, & Chinabut, 2007). The frequency and severity of 

droughts have increased, causing significant damage to the agricultural and economic 

sectors, resulting in reduced crop yields and hardships for farmers (Arpakorn & Chen, 

2021; Suwanlee, Homtong, & Som-ard, 2023). The northeast of Thailand has 5 

provinces, which cover an area of about 63,554 square kilometers, or one-third of the 

whole country. On the Korat plateau (Saruda, Jinda, & Apiwat, 2021), droughts 

usually occur when there is a lack of rain for a long period of time, especially in the 

northeastern region, when there will be a decrease in the amount of rain (Saruda et al., 

2021). As a result, the amount of water stored in reservoirs and dams is much less 

than before. This causes agricultural areas to lack water. 

This research uses machine learning XGBoost (XGB), Random Forest (RF) and Extra 

Trees Regressor (ETR) to integrate remote sensing and ground observation data from 
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 5 

the Thai Meteorological Department to calculate drought indices. The study focuses 

on leveraging Landsat 8 satellite data from 2014 to 2023 to analyze drought 

conditions using the Google Earth Engine and scikit-learn and analyzing the spectral 

indices The Vegetation Condition Index (VCI), The Enhanced Vegetation Index, The 

Temperature Condition Index (TCI), A Digital Elevation Model (DEM), Climate 

Hazards Group InfraRed Precipitation (CHIPRS) and The Standardized Precipitation 

Evapotranspiration Index (SPEI) and using accuracy and the R2, RMSE and MAE for 

the assessment performance of machine learning models (XGB, RF, ETR) and 

drought mapping in the northeast region of Thailand. 

1.2 Scientific Questions 

• What are the spatiotemporal patterns of drought occurrences in the Northeast 

region of Thailand from 2014 to 2023, as observed through Landsat 8 satellite 

data? 

• How does the performance of machine learning models, specifically XGBoost 

(XGB), Random Forest (RF), and Extra Trees (ETR), compare in accurately 

calculating drought monitoring in Northeast Thailand? 

• What is the spatial distribution of drought events in the Northeast of Thailand 

from 2014 to 2023? 

1.3 Objectives 

• To analyze and investigate the spatio-temporal patterns of drought occurrences in 

the Northeast region of Thailand from 2014 to 2023 using Landsat 8 satellite 

data. 

• To assess and compare the performance of machine learning models between 

specifically XGBoost (XGB), Random Forest (RF), and Extra Trees (ETR) for 

the accurate calculation of drought monitoring in Northeast Thailand. 

• To map the spatial distribution of drought events in the Northeast of Thailand 

from 2014 to 2023. 

1.4 Structure of Thesis 

This research aims to analyze drought within the Northeast of Thailand for the period 

from 2014 to 2023 using Landsat 8 and ground station data for The Vegetation 
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Condition Index (VCI), The Enhanced Vegetation Index, The Temperature Condition 

Index(TCI), A Digital Elevation Model (DEM), Climate Hazards Group InfraRed 

Precipitation (CHIPRS) analysis in Python and The Standardized Precipitation 

Evapotranspiration Index (SPEI) analysis in R Studio for training and validation. 

using machine learning models, XGBoost (XGB), Random Forest (RF), and Extra 

Trees (ETR) to find the best model to assess and compare the performance of the 

model by R2, RMSE, and MAE within the Northeast region of Thailand. The scope of 

the study is the entire Northeast of Thailand, which is characterized by predominantly 

sandy soil with limited water retention capacity (Fujii et al., 2017; Suzuki et al., 

2007). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  1 Diagram Framework in This Study 
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CHAPTER 2 LITERATURE REVIEW 

2.1 Background of This Study  

2.1.1 The Seasons of Thailand 

Thailand generally can be divided into 3 seasons as follows (Thai Meteorological 

Department) Summer season starts around the middle of February until the middle of 

May, this is when things will change from the northeast monsoon. It is a storm in the 

southwest and is how far away the North Pole is from the sun. As a result, the weather 

is usually hot and stuffy, especially in April. These days, it's mostly hot and dry, but 

sometimes a cold air mass from China will come through. spread down to cover the 

top of Thailand. 

The rainy season starts around the middle of May until the end of June as the 

southwest monsoon blows over Thailand, a low-pressure trough will cross the 

country, causing a lot of rain. It will then move through the southern China area. 

Thailand has been getting less rain for a while, and it's called rain. This could last for 

a week or two, a year, or even longer, and it could get worse. and it didn't rain for 

months. 

Winter season starts around mid-October to mid-February. When the northeast 

monsoon It has blanketed Thailand. In mid-October for 1-2 weeks, the season changes 

from the rainy season to the winter season. The weather is unstable. It may start to get 

cold. Or there may still be thunderstorms. Especially in the lower central region. and 

the eastern region down there will stop raining and the weather will begin to cool later 

than the northern and northeastern regions (Thai Meteorological Department).  

2.1.2 Temperature of Thailand 

Thailand is in the tropics. The general weather conditions are therefore hot and humid 

most of the year. The average year-round temperature in Thailand is approximately 27 

°C. However, temperatures vary in each area and season. The area is deep inland from 

the central region. The upper eastern region up to the northern region will have very 

different temperatures between summer and winter and between day and night in 

summer, the highest temperature is in the afternoon. It usually reaches nearly 40 °C or 

more from March to May. Especially April will be the hottest month of the year. In 
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winter, the lowest temperature in the early morning drops to a range of cold to very 

cold. Especially December to January is the coldest period of the year. During this 

period, temperatures can drop below freezing in the northern region. and the 

northeastern region, areas that are mountain ranges or high mountain peaks for areas 

next to the sea, including the lower eastern region. and the southern region, 

temperature variations across days and seasons are less. The summers are not as hot, 

and the winters are not as cold as in areas deeper inland (Thai Meteorological 

Department).  

2.1.3 Rainfall in Thailand 

Many Thailand has good rainfall. Most areas receive 1,200-1,600 millimeters of 

rainfall per year. The average annual total rainfall throughout the country is 

approximately 1,587.7 millimeters. The amount of rainfall in each area varies 

according to topographical features. In addition to seasonal variations Upper Thailand 

is normally dry and has little rain in winter. When entering summer, the amount of 

rain It will increase somewhat along with thunderstorms. And when the rainy season 

enters, the amount of rain will greatly increase.  

The highest amount of rain will occur in August or September. Areas with a lot of 

rain Most are in front of the mountain range. or the side receiving the southwest 

monsoon winds, including areas on the western side of the country and the eastern 

region. Most of the areas with little rain are behind the mountains. Including the 

central areas of the northern and central regions. and the western area of the 

northeastern region for the southern region, there is a lot of rain throughout the year 

except during the summer.  

Area in the southern west coast which is the side receiving the southwest monsoon 

winds There will be more rainfall than the southern region on the eastern coast during 

the rainy season. With the highest amount of rain in September. During the winter in 

the southern and eastern areas which is the side receiving the northeast monsoon 

winds There will be more rainfall than the southern west coast. With the highest 

amount of rain in November (Thai Meteorological Department).  
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2.1.4 Drought in Thailand 

In Current global climate change It causes the rainy season to become shorter, which 

means that the dry season will be longer. as a result, the amount of water in dams and 

reservoirs throughout the country is insufficient for consumption. especially in 

agricultural areas in addition, the prosperity of the community Economic expansion 

such as the industrial sector Service business sector and the number of the population 

has continued to increase at the same time as a result, the demand for water use in 

various activities in every sector has increased. Therefore, it is one of the factors that 

cause the problem of water shortage. 

Thailand has drought problems quite frequently. Most droughts in Thailand are 

caused by abnormally long periods of rain during the rainy season. or caused by 

natural phenomena such as El Niño. Almost every region in Thailand has experienced 

drought problems. Droughts have occurred since the past until the present. The most 

recent drought in Thailand was of 2019 - 2020, which may have been quite severe. 

Due to the amount of demand for water increasing every day, but the lack of rain and 

El Niño, there is very little water in various reservoirs and dams within Thailand. 

Droughts in Thailand mostly occur in two periods. 

 1) The winter period continues into the summer. Starting from the second half 

of October onwards. The upper Thailand area (Northern, Northeastern, central and 

eastern regions) will have a progressive decrease in rainfall until entering the rainy 

season in mid-May of next year. This type of drought occurs every year. 

 2) In the middle of the rainy season Around the end of June to July There will 

be some rain. This kind of drought occurs only in certain localities or areas. 

Sometimes it may cover a wide area almost all over the country (Thai Meteorological 

Department). 

The area most affected by drought is the northeast region. Because it is an area where 

the influence of the southwest monsoon cannot reach. And if in any year there is no 

tropical cyclone moving through this line, it will cause danger. The drought is more 

severe. In addition to the areas mentioned above, there are other areas that frequently 

experience drought  problems as shown in the Table 1. 
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Table  1 The area experienced drought 

 

 

 

 

 

 

2.2 Geoinformatics Technology 

Geo-information technology includes of Remote Sensing technology, Geographic 

Information System and Global Positioning System. For application in various fields 

of work. Details of these technologies are as follows: 

2.2.1 Remote Sensing 

RS refers to the science and art of acquiring information about objects, areas, or 

phenomena from data recording devices without touching the target object. It relies on 

the properties of electromagnetic waves as a medium for acquiring information in 3 

ways. Characteristics include wavelength (Spectral), morphology of objects on the 

earth's surface (Spatial), and changes over time (Temporal) (Abdulraheem et al., 

2023). If weather observation station data are not covered enough, remote sensing 

data can make up for it with their wide coverage, high spatial resolution, and strong 

timeliness. 

2.2.2 Geographic Information System 

Geographic information system means an information system that brings information 

to be collected, stored, and analyzed in a systematic way (Ershad & Ali, 2020). Data 

can be searched and updated, including data obtained from analysis to help make 

decisions in various matters. The data collected and stored in the system can be used 

to manage and analyze spatial data. The spatial data is also linked with Attribute data 

that is used to describe in detail the phenomena and characteristics of that area. This 

will make the use of data more accurate and accurate. 
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2.2.3 Global Navigation Satellite System 

Global Navigation Satellite System is a satellite navigation system. Using electronic 

equipment as a receiver to process the positional information at the point where the 

receiving device is located. This technology is becoming very popular in surveying 

and research applications. Currently, many satellite navigation systems have been 

developed, such as BeiDou (China), GPS (USA), GLONASS (Russia), Galileo 

(Europe), QZSS (Japan), SBAS (Ashour, El-Tokhey, Mogahed, & Ragheb, 2022). 

There are many remote sensing drought indices that have been proposed and used to 

track droughts on a global or regional level. These indices are based on new denoising 

algorithms and atmospheric correction algorithms. The effects of drought on plant 

growth and development can be seen on remote sensing images as changing spectral 

features. Lack of water can change plants' biochemical and physiological features, 

which can then cause changes in their spectral properties. So, most remote sensing 

drought indices figure out what a drought is by checking the condition of the plants on 

the ground. Now, RS provides data about rainfall, temperature, groundwater storage, 

evaporation, plant response, and plant functions. Such information can be used to 

characterize drought from both temporal and spatial perspectives. 

2.3 Drought indices 

2.3.1 The Vegetation Condition Index 

In The Vegetation Condition Index (VCI) useful for identifying and tracking droughts 

and colors to show how healthy the plants are. NDVI data is modified and used to 

create vegetation conditions (Kogan, 1995). The Normalized Difference Vegetation 

Index (NDVI), calculated from the ratio of red and near-infrared in the 

electromagnetic spectrum [11]. 

𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑟𝑒𝑑)

(𝑁𝐼𝑅 + 𝑟𝑒𝑑)
 

NDVI has become the primary way to describe crops. Area covered around the world 

Vegetation classification and dynamics and the life cycle of plants (Kogan, 1995). 

The NDVI measures the amount of green vegetation by considering that during 

photosynthesis, plants absorb visible light and strongly reflect near-infrared light, 

which is not used for photosynthesis. NDVI values relate to green biomass, green leaf 
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area index (LAI) (Caruso, Palai, Tozzini, D'Onofrio, & Gucci, 2023), and the 

percentage of vegetation cover (SalİK & Karacabey, 2019). 

it shows the health of the plants and helps with more accurate labeling. The lowest to 

highest monthly NDVI values were looked at to see how different they were each 

year, VCI shows how the weather affects vegetation (Ejaz, Bahrawi, Alghamdi, 

Rahman, & Shang, 2023). so, the following equations were used. 

𝑉𝐶𝐼 =
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)
× 100 

VCI value is higher, which means that the plants are very healthy. In other words, a 

high VCI number means that drought problems are less likely to happen (Arpakorn & 

Chen, 2021). 

2.3.2 The Enhanced Vegetation Index 

The Enhanced Vegetation Index is often used to measure the health of vegetation 

(Diodato & Bellocchi, 2008). EVI looks like the Normalized Difference Vegetation 

Index (NDVI). EVI can be saturation or the influence of aerosols and soil background 

on vegetation indices (Xiao et al., 2003). By considering the differential scattering of 

aerosols in blue and red bands, EVI mitigates the effects of aerosols on the red band, 

enhancing the accuracy of vegetation monitoring. Unlike NDVI, EVI exhibits a more 

significant linear relationship with actual vegetation coverage and provides better 

sensitivity to vegetation changes across different landscapes and densities (B. Li, 

Tang, & Chen, 2009), so the following equations were used. 

𝐸𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 6 𝑥 𝑅𝑒𝑑 − 7.5 𝑥 𝐵𝑙𝑢𝑒 +  1)
 

2.3.3 The Temperature Condition Index 

The Temperature Condition Index (TCI) derived thermal infrared bands. It is related 

to the response of vegetation to temperature calculated with The Land Surface 

Temperature (LST) and provides important information about the health of vegetation 

(Kogan, 1995). surface evapotranspiration by LST variations and assessing 

evapotranspiration, vegetation water stress (Karnieli et al., 2010), and drought 

occurrence by soil moisture content changes (X. Li et al., 2023), and is defined as: 
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𝑇𝐶𝐼 =
(𝐿𝑆𝑇 − 𝐿𝑆𝑇𝑚𝑖𝑛)

(𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛)
× 100 

where LST is actual, LSTmin and LSTmax are the multi-year minimum and 

maximum LST values for each pixel, respectively, calculated from multiyear time 

series data. Higher TCI values indicate higher temperatures compared to the multi-

year range, suggesting drought conditions or stress on vegetation (Kocaaslan, 

Musaoglu, Türkeş, & Tanik, 2017), while lower TCI values suggest lower 

temperatures relative to the multi-year range, which may indicate healthier vegetation 

or more favorable conditions (Singh, Roy, & Kogan, 2003). 

2.4 Topography      

Drought is related to topography (Xu et al., 2023). This study also considered 

information from topography and geographic locations. topography at high elevations 

in the mountains exhibited a higher sensitivity to drought. Despite having low 

climatic water deficits, high-elevation forests face constraints such as shallow, rocky 

soils and steep slopes that limit soil water storage and tree root development leading 

to vulnerability during drought events (Cartwright, Littlefield, Michalak, Lawler, & 

Dobrowski, 2020).   

2.5 The Standardized Precipitation Evapotranspiration Index 

The Standardized Precipitation Evapotranspiration Index (SPEI) serves as a 

comprehensive tool for monitoring both wet and dry conditions, with potential 

evapotranspiration (PET) playing a crucial role in the frequency, severity, and 

intensity of drought occurrences (Vicente-Serrano & Beguería, 2015). PET estimation 

methods, such as Thornthwaite, Hargreaves, and Penman-Monteith, are instrumental 

in SPEI calculations (Lin & Shelton, 2020). The Thornthwaite and Hargreaves 

methods rely on maximum and minimum temperatures for PET computation, with 

Hargreaves additionally utilizing the latitude of the station to estimate extraterrestrial 

radiation (Pan et al., 2015). In contrast, the Penman-Monteith method integrates 

humidity and wind speed, necessitating more extensive meteorological data. The 

choice among these methods depends on the availability of meteorological data 

(Páscoa, Gouveia, Russo, & Trigo, 2017). 
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The SPEI index reflects the accumulated water content, both above and below ground, 

throughout the season and year, making it sensitive to precipitation and atmospheric 

evaporative demand (Vicente-Serrano & Beguería, 2015). Calculated over various 

timescales, the SPEI provides insights into different temporal patterns of wetness or 

dryness. The SPEI 1-month scale is particularly useful for monitoring rapid changes 

in drought conditions and their immediate impacts on ecosystems, agriculture, and 

water resources. Meanwhile, the SPEI 3-month scale proves valuable for assessing 

drought effects on seasonal vegetation growth, water availability, (Tomas-Burguera et 

al., 2020) and agricultural productivity. For agricultural planning, the SPEI 6-month 

scale is significant as it covers a substantial portion of the growing season (Potopová 

et al., 2018), aiding in the evaluation of drought stress on crops and natural 

vegetation. Finally, the SPEI 12-month scale facilitates the understanding of 

cumulative drought effects over an entire year, including impacts on water resources, 

ecosystems, and long-term agricultural sustainability (Nwayor & Robeson, 2024; 

Saruda et al., 2021). 

Table  2 Summary of selected drought indices 

 

Drought indices Usage Reference 
Normalized difference 

vegetation index (NDVI) 

It is used for measuring agricultural drought and 

monitoring the health of vegetation. 

(SalİK & 

Karacabey, 

2019),(Kogan, 

1995),(Qin et al., 

2021) 

The Land Surface 

Temperature (LST) 

High LST values over agricultural areas can 

indicate insufficient soil moisture for crop growth. 

(Kogan, 

1995),(Karnieli 

et al., 2010),(X. 

Li et al., 

2023),(Holzman, 

Rivas, & Piccolo, 

2014) 

The Vegetation Condition 

Index (VCI) 

Assesses the health of vegetation from the impact 

of drought. low VCI values can be indicative of 

vegetation stress due to inadequate water 

availability. 

(Arpakorn & 

Chen, 

2021),(Ejaz et 

al., 

2023),(Kogan, 

1995),(Rousta et 

al., 2020) 
The Enhanced Vegetation 

Index (EVI) 

EVI provides better sensitivity to vegetation 

changes across different landscapes and densities 
(Diodato & 

Bellocchi, 

2008),(B. Li et 

al., 2009) 

 

. 

1
7

1
4

8
0

9
3

0
8



 

B
U
U
 
i
T
h
e
s
i
s
 
6
5
9
1
0
0
3
7
 
t
h
e
s
i
s
 
/
 
r
e
c
v
:
 
1
0
0
2
2
5
6
8
 
1
6
:
0
0
:
3
1
 
/
 
s
e
q
:
 
1
2

 15 

Drought indices Usage Reference 
The Temperature Condition 

Index (TCI) 

TCI values indicate higher temperatures, 

suggesting drought conditions or stress on 

vegetation, TCI values suggest lower temperatures, 

suggesting healthier vegetation 

(Kogan, 

1995),(Karnieli 

et al., 2010),(X. 

Li et al., 

2023),(Kocaaslan 

et al., 2017) 

The Standardized 

Precipitation 

Evapotranspiration Index 

(SPEI) 

Uses monthly rainfall to calculate the 

evapotranspiration potential, which indicates the 

amount of accumulated water both above ground 

and underground. 

(Pan et al., 

2015),(Vicente-

Serrano & 

Beguería, 2015) 

 

2.6 Related Works 

Xiehui Li (2023) investigated drought monitoring in southwest China from 2010 to 

2019, focusing on comparing land surface temperature (LST) using remote sensing 

with meteorological station measurements from 144 weather stations across southwest 

China from 1980 to 2019. They employed remote sensing data and machine learning 

techniques, specifically Random Forest (RF) and eXtreme Gradient Boosting 

(XGBoost). Their model's effectiveness was validated against historical drought 

records and various drought indices, including the Standardized Precipitation 

Evapotranspiration Index (SPEI) and the Meteorological Drought Composite Index 

(MCI). The model demonstrated exceptional accuracy and performance, achieving an 

average score of 0.955 for RF and 0.931 for XGBoost in 5-fold cross-validation (X. 

Li et al., 2023).         

Yangyang Zhao (2022) used machine learning to investigate the relationships between 

independent and dependent factors to replicate the Standard Precipitation 

Evapotranspiration Index (SPEI) for Shandong province, China. They utilized seven 

drought effect factors from the Moderate Resolution Imaging Spectroradiometer 

(MODIS) satellite sensor, the Global Precipitation Measurement Mission (GPM), and 

the Global Land Data Assimilation System (GLDAS). The study also incorporated 

ground-based SPEI derived from monthly temperature and precipitation data from 

various weather sites. The Bias-Corrected Random Forest (BRF) model outperformed 

eXtreme Gradient Boosting (XGBoost) and Support Vector Machines (SVM), 

accurately predicting SPEI distribution and tracking drought conditions in areas 

lacking ground-based observations (Zhao et al., 2022). 
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Shahana Sultana (2021) assessed the northwestern regions of Bangladesh by 

comparing multiple drought indices (VCI, TCI, VHI, TVDI, VSDI) from 1990 to 

2018. Their study revealed vegetation reduction (NDVI) and land surface temperature 

(LST) increased between 2014 and 2002, leading to drought in 2018, particularly 

affecting water-deficient and unfarmed lands. Emphasizing the importance of 

satellite-based drought measurement, the study highlights the necessity of better 

understanding and managing droughts in northwest Bangladesh's agricultural 

landscape (Sultana, Gazi, & Mia, 2021). 

Savittri Ratanopad Suwanlee (2023) utilized Earth observation (EO) satellites and 

MODIS NDVI data to monitor drought in Northeast Thailand from 2001 to 2019. 

Employing the Savitzky-Golay method for noise reduction, the study identified 

distinctive drought patterns using optimal indicators like the Vegetation Condition 

Index (VCI). Severe and frequent droughts in 2005, 2004, 2007, and 2001 

significantly impacted northern and central regions. The VCI demonstrated high 

accuracy (R2=0.85), offering a reliable tool for drought monitoring in the region and 

effectively displaying the spatial distribution of long-term drought regions (Suwanlee 

et al., 2023). 

Nuaman Ejaz (2023) focused on drought monitoring in the hyper-arid region of the 

Kingdom of Saudi Arabia using remote sensing to analyze the Standardized 

Precipitation Evapotranspiration Index (SPEI) and Remote Sensing Retrieved 

Drought Indices (RSDIs) from 2001 to 2020. Utilizing multi-temporal Landsat 

sensors and the Google Earth Engine platform, they identified the Vegetation 

Condition Index (VCI), Temperature Condition Index (TCI), and Vegetation Health 

Index (VHI) as key drought indicators. The study found stronger agreement between 

VHI and SPEI compared to TCI and VCI, indicating their suitability for drought 

measurement, especially in data-limited hyper-arid regions of Saudi Arabia (Ejaz et 

al., 2023). 

Junyong Zhang (2023) employed machine learning for drought estimation in the 

semi-arid zone of northern China. Using multiple linear regression and bias-corrected 

Random Forest algorithms, they analyzed spectral aridity index, VSDI, VCI, TCI, 

VHI, GVMI, VSWI, NDWI, RVI, MSAVI, PDI, SPSI, and NMDI from 2001 to 2019, 
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along with ground-based climate datasets. They calculated Standard Precipitation 

Index (SPI), Standardized Precipitation Evapotranspiration Index (SPEI), and Palmer 

Drought Index (PDSI) for various time scales. The bias-corrected RF model 

demonstrated superior accuracy, establishing it as an effective tool for monitoring 

drought at multiple time scales (J. Zhang et al., 2023). 

N. Zaabar (2022) utilized a Convolutional Neural Network (CNN) with Object-Based 

Image Analysis (OBIA) to analyze spectral index combinations from Sentinel-2 

imagery in northern Algeria. NDVI, NDBI, and NDWI were key indices. The CNN-

OBIA approach demonstrated strong accuracy, with Overall accuracy and Kappa 

Index reaching 93.1% and 0.91, respectively, outperforming RF-based OBIA 

(Narimane, Niculescu, & Mihoubi, 2021). 

Foyez Ahmed Prodhan (2021) employed deep forward neural network (DFNN) to 

monitor agriculture in South Asia from 2001 to 2016. DFNN outperformed distributed 

Random Forest (DRF) and gradient boosting machine (GBM), exhibiting stability in 

cross-validated training data and accurately estimating Soil Moisture Deficit Index 

(SMDI) across phenology stages. DFNN-estimated SMDI closely matched in-situ 

SPEI, suggesting its potential for consistent drought monitoring over a wide area 

(Prodhan et al., 2021). 

Table  3 Summary of related works 

 

Study area ML 

algorithm 

Dataset used Indices Ref. 

Southwest 

China 

RF, 

XGBoost 

MODIS, 

TRMM3B43 

NDVI, EVI, 

TRMM-SPI, VCI, 

TCI, VTCINDVI, 

VTCIEVI, 

TVDINDVI, 

TVDIEVI, 

VSWINDVI, 

VSWIEVI, SPEI, 

MCI 

(X. Li et 

al., 2023) 

Shandong 

province, China. 

BRF, 

XGBoost, 

SVM 

MODIS, 

GLDAS2.1, 

GPM 

VCI, TCI, PCI, 

SMCI, EVI, ET, 

PET 

(Zhao et 

al., 2022) 
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Study area ML 

algorithm 

Dataset used Indices Ref. 

The 

Northwestern 

regions of 

Bangladesh. 

- Landsat TM, 

Landsat ETM+, 

Landsat 

OLI/TIRS 

VCI, TCI, VHI, 

TVDI, VSDI 

(Sultana et 

al., 2021) 

The Northeast 

Thailand. 

- MODIS NDVI, VCI, SVI (Suwanlee 

et al., 

2023) 

The hyper-arid 

region of the 

Kingdom of 

Saudi Arabia. 

- Landsat 7 and 8 SPEI, VCI, TCI, 

VHI 

(Ejaz et al., 

2023) 

The semi-arid 

zone of northern 

China. 

MLR, RF MODIS, 

GLDAS2.1, 

GPM 

VSDI, VCI, TCI, 

VHI, GVMI, VSWI, 

NDWI, RVI, 

MSAVI, PDI, SPSI, 

NMDI 

(J. Zhang 

et al., 

2023) 

The North-

western region 

Algeria 

CNN, 

OBIA 

(SVM, RF) 

Sentinel 2 NDVI, NDWI, 

NDBI 

(Narimane 

et al., 

2021) 

The South Asia DFNN MODIS, 

MERIS, 

GLDAS, 

CHIRPS, 

GIMMS, 

Station Data 

TCI, VHI, VCI, 

EDI, SPEI, SPI, 

PAI, PCI 

(Prodhan et 

al., 2021) 

 

2.7 Machine Learning Models Algorithms 

This study further employed the Logistic Regression (LR), XGBoost (XG), Random 

Forest (RF), and Extra Trees (ETR) models as baseline models against which to 

benchmark the predictive performance. The baseline models chosen to possess the 

ability to allow a robust assessment of the model against various degrees of 

complexity. The model was further used to benchmark the explainability of the 

drought in northeast Thailand. 

2.7.1 Extreme Gradient Boosting 

The XGBoost algorithm, developed by Chen and Guestrin (Chen & Guestrin, 2016). 

Which is a machine learning technique for regression and classification problems 

which produces a prediction model in the form of an ensemble of weak prediction 

models (R. Zhang, Chen, Xu, & Ou, 2019). The XGBoost algorithm represents a 
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significant improvement in computational efficiency within research (B. Zhang et al., 

2023). Its robust architecture not only enhances reliability but also facilitates the 

attainment of more dependable results. This algorithm has garnered preference in 

research due to its adeptness in handling vast datasets through parallel processing and 

distributed computing capabilities, thereby amplifying its efficacy in addressing 

complex scientific inquiries is a unique way to apply both Gradient Boosting Machine 

and Regression Trees (CART) (Ekmekcioğlu, 2023). It tries to avoid overfitting while 

making the best use of computing resources by combining predictive and 

regularization terms in simplified objective functions. XGBoost also does parallel 

math automatically while the training is going on (Gul, Staiou, Safari, & Vaheddoost, 

2023). XGBoost starts with a single leaf and adds more branches to the tree 

repeatedly until the best split is found. With XGboost, you can't train multiple trees at 

the same time, but you can make separate tree nodes at the same time. XGBoost has a 

distributed weighted quantile sketch method that helps you find the best split points and 

work with weighted datasets (Ali, Abduljabbar, Tahir, Sallow, & Almufti, 2023; Chen & 

Guestrin, 2016). The weights of individual trees can be scaled down by a constant, thus 

reducing the impact of a single tree on the final score (Mehraein, Mohanavelu, Naganna, 

Kulls, & Kisi, 2022). 

2.7.2 Random Forest  

The Random Forest algorithm, developed by Breiman (Breiman, 2001). RF is a 

combination classification or regression method based on statistical learning theory. 

The resampling bootstrap method is used to get several samples in an RF, and 

regression trees are built for each bootstrap sample (J. Li et al., 2021). Most of the 

time, RF use bootstrapping to make random groups from a starting dataset while 

keeping the population size the same. A decision tree is built for each of these groups. 

In regression tasks, the final output of an RF model is simply the average of the 

predictions made by each tree. In classification tasks, on the other hand, the outcome 

that appears most often is picked as the final output of the RF model (Niazkar et al., 

2024). The random forest method is famous for being able to handle a lot of data, find 

complex relationships between factors, and make correct predictions. As part of this 

regression method, we used estimators that consider the number of trees, the 
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maximum depth set as the tree's highest level, and other factors (Aziz, Camana, 

Garcia, Hwang, & Koo, 2023). algorithm shown in figure 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  2 Diagram of Random Forest 

2.7.3 Extra Trees Regression 

The Extra Tree Regression (ETR) algorithm was created by building on the Random 

Forest (RF) model and developed by Geurts et al (Geurts, Ernst, & Wehenkel, 2006). 

The distinction between Extra Trees and Random Forest lies in their approach to 

selecting cut points for node splitting (John, Liu, Guo, Mita, & Kidono, 2016). 

Random Forest selects the optimal split, while ETR chooses it randomly. 

Consequently, in terms of computational efficiency, the ETR algorithm is faster as it 

randomly selects the split point without calculating the optimal one. (Lou et al., 2022) 

The ETR is a supervised learning algorithm that needs to be trained on a labelled 

dataset that has input features and goal values that go with them. Like the Random 

Forest algorithm, ETR algorithm makes a lot of decision trees, but each tree's samples 

are chosen at random and are not replaced. This makes a set of datasets with unique 

samples for each tree. Each tree also gets a random set of a certain number of features 

from the whole set of features. In particular, the ETR algorithm predicts a continuous 

target variable by looking at the properties of the input. This algorithm proves 

particularly valuable when dealing with complex regression problems (Aziz et al., 

2023).  
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2.8 Summary of this chapter 

The In conclusion, the literature review provides various factors influencing weather 

patterns, particularly focusing on Thailand. Thailand's seasonal variations, including 

summer, rainy season, and winter, and the meteorological conditions during each 

period. the temperature and rainfall patterns across Thailand, the variations in 

different regions and seasons. Additionally, it discusses the prevalent issue of drought 

in Thailand, attributing it to factors such as climate change, population growth, and 

increased water demand. The chapter also outlines the geographic and topographic 

factors influencing drought susceptibility, particularly noting the sensitivity of high-

elevation regions. 

Moreover, the theories of geoinformatics technologies such as remote sensing, 

geographic information systems (GIS), and global navigation satellite systems 

(GNSS), emphasize their significance in monitoring and analyzing weather-related 

phenomena. these technologies aid in drought assessment and mitigation efforts 

through the analysis of various indices such as the Vegetation Condition Index (VCI), 

Enhanced Vegetation Index (EVI), Temperature Condition Index (TCI), and the 

Standardized Precipitation Evapotranspiration Index (SPEI). 

Furthermore, the chapter introduces machine learning models, including Logistic 

Regression, XGBoost, Random Forest, and Extra Trees, which are utilized for 

predictive analysis and understanding the complexities of drought in northeast 

Thailand. It provides the algorithm's functions through data analysis and prediction.  
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CHAPTER 3 MATERIALS AND METHODS 

The methodology of this study contains XGBoost, Random Forest and Extra  

Trees models using remote sensing data from Landsat 8 and ground observation 

data from the Thai Meteorological Department for the calculation of drought 

indices. This chapter includes data collection, data preprocessing, machine 

learning drought period 2014 - 2023 and model accuracy comparison. All steps 

will be detailed in the following.  

3.1 General Background of Study Area 

The purpose of this research is to investigate the effects of drought in the 

northeast of Thailand. It's between the latitudes of 14° and 16° N and the 

longitudes of 101° and the 106° East (Mongkolsawat et al., 2001). The terrain is 

on the Korat plateau because most of it is a plateau show in figure 3. Slopes 

from west to east. The edge of the area is a high mountain. Most of the area is 

covered with rocks. The plain area is a large basin of land. The Korat Basin 

covers three-quarters of the entire northeastern region. It is considered the 

widest plain in Thailand, with an average height of 120–170 meters above 

mean sea level. The area in the middle of the basin is a low plain. The Mun 

River is the main river that drains water from the plain edge of the basin. It is 

the most important tributary of the Mekong River. Its origin is in Nakhon 

Ratchasima Province.  

It is the longest river in this region, 641 kilometers long, with a basin area of 

approximately 70,100 sq. km., lying parallel to the Phanom Dong Rak 

mountain range. The Mun River is a river. The slope is very slight, meaning 

that the entire length of the river will decrease by an average of 52 meters, or 

16 centimeters per kilometer, causing the plains in the Mun River area to be 

flooded every year. This is because the water cannot be drained out in time 

with the water capacity. The Mun River flows through Nakhon Ratchasima, 

Buriram, Surin, Sisaket and Ubon Ratchathani provinces. and the Mun River 

flows into the Mekong River in Khong Chiam District. Ubon Ratchathani 

Province (Arts and Culture Center Khon Kaen University). showed in Figure 3.  
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Figure  3 Study area the northeast of Thailand 

 

3.2 Workflow of Research 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  4 Methodology framework of this study 
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This workflow explains from beginning to completion, the methods for conducting 

this investigation. Figure 4 displays all data variables and sources, including data 

preprocessing and remote sensing data such as vegetation, temperature, topography, 

and precipitation. While ground observation was calculated according to SPEI, the 

data were processed, and the data were also converted from vector to raster formats. 

For the model prediction. Three machine learning algorithms were used to estimate 

the drought in the study area and identify the most effective model with the most 

important feature variables. Finally, the spatial distribution of the drought area was 

computed using the Zonal statistic from the best model output. 

3.3 Data Collections  

This study combines remote sensing techniques and ground observations to calculate 

the drought area. Remote sensing data sourced from Google Earth Engine, a cloud-

based geospatial data analysis platform, enables the access and analysis of vast 

quantities of satellite imagery, climate data, and other pertinent geospatial 

information. Additionally, meteorological data obtained from the Thai Meteorological 

Department contributed to the comprehensive dataset utilized in this calculation of the 

drought area. 

3.3.1 Remote Sensing data 

The remote sensing data used The Landsat 8 has a 30-meter spatial resolution. This 

dataset contains atmospherically corrected surface reflectance and land surface 

temperature derived from the data produced by the Landsat 8 OLI/TIRS 

("LANDSAT/LC08/C02/T1_L2") sensors (Holden & Woodcock, 2016; Orusa, Viani, 

Cammareri, & Borgogno Mondino, 2023; Perez & Vitale, 2023). using Band 2 (blue), 

Band 4 (red), Band 5 (near infrared), and Band 10 (surface temperature). This data 

covered a period of 10 years, from 2014 to 2023. This data was used to analyze the 

drought indices VCI, EVI, TCI and topography this study use DEM from Copernicus 

("COPERNICUS/DEM/GLO30") (Guth et al., 2021; Im, 2023; T. Li et al., 2023; 

Yuzugullu, Fajraoui, Don, & Liebisch, 2024) DEM is a Digital Surface Model (DSM) 

that represents the surface of the Earth including buildings, infrastructure and 

vegetation. This DEM is derived from an edited DSM named WorldDEM&trade and 

Precipitation from Climate Hazards Group InfraRed Precipitation ("UCSB-
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CHG/CHIRPS/DAILY") with Station Data (CHIRPS) is a quasi-global rainfall 

dataset (Du et al., 2023; Gwatida et al., 2023). CHIRPS incorporates 0.05° resolution 

satellite imagery with in-situ station data to create gridded rainfall time series for 

trend analysis and seasonal drought monitoring by Google Earth Engine. 

3.3.2 Ground Station Data 

These ground observations cover a period of 11 years from 2013 to 2023 because 

SPEI 12 requires data from the previous year to calculate the period to ensure accurate 

and comprehensive assessments of drought severity over a full year. The 

meteorological data, including precipitation and temperature data, is collected 

monthly from 11 weather stations (showing station data in Appendix A) across the 

northeast of Thailand. The data comes from the Thai Meteorological Department. 

And prepare the data from the table in pdf to csv format using the Microsoft Excel 

program to prepare the data (showing precipitation and temperature data in the 

appendix B, C, D) from the original format into the SPEI package format before 

calculating in the R program. 

Table  4 Summary of data collections 

 

3.4 Preprocessing Data 

The workflow includes several key steps. It begins with data loading, followed by 

index computation. During the index calculation phase, each index is processed 

individually, and subsequently merged into a singular image using the addBands 

function in Google Earth Engine. This combine image is later exported as a GeoTiff 

file, resulting in the generation of multiple images. After that, exporting image data 

will receive multiple images because of the large area. Subsequently, the integration 

Type Sources Dataset Index Spatial 

resolution 

Period Source 

Remote sensing 

Data 

Landsat 8 

VCI 

30 m 
2014- 2023 

 

USGS 

 
EVI 

TCI 

GLO-30 DEM Copernicus 

CHIPRS PCI  
USGS/ 

CHC 

Ground station 

Data 

Precipitation 
SPEI 11 stations 

2013 - 2023 
TMD 

Temperature 
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of these image merges using the GDAL library in Python 3.11 within the Jupyter 

Notebook environment. Each year, the summary formula for preprocessing is shown 

in Table 5. 

3.4.1 The Vegetation Condition Index 

The Vegetation Condition Index (VCI) is derived from the Normalized Difference 

Vegetation Index (NDVI), computed utilizing Landsat 8 bands 4 (red) and 5 (near 

infrared). The NDVI is a metric widely employed for assessing vegetation health 

(Gessner, Reinermann, Asam, & Kuenzer, 2023). Utilizing Google Earth Engine, 

NDVI values are processed to generate the VCI, which provides insights into the 

vegetation's condition at a spatial resolution of 30 meters. After that, computation, the 

resulting VCI values undergo a normalization process to standardize their scale to a 

range of 0 to 1. The methodology is iterated each year, covering the period from 2014 

to 2023. The entire process, ranging from the calculation of the Normalized 

Difference Vegetation Index (NDVI) to the normalization of the Vegetation Condition 

Index (VCI), The formula for this process summary is in Table 5. showed VCI in 

Figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  5 The Vegetation Condition Index 2014 - 2023 
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3.4.2 The Enhance Vegetation Index 

The Enhanced Vegetation Index (EVI) exhibits heightened sensitivity in regions 

characterized by dense vegetation and can effectively discern stress and alterations 

attributed to drought conditions. (Yang, Xu, Stovall, Chen, & Lee, 2021) Its 

calculation involves the utilization of Landsat 8 bands 2 (blue), 4 (red), and 5 (near-

infrared). The formula for EVI computation is detailed in Table 5. Following 

computation, the resultant EVI values undergo a normalization process, scale is 

standardized within the range of 0 to 1. This methodology is recurrently applied 

annually throughout the timeframe spanning from 2014 to 2023. showed in Figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  6 The Enhance Vegetation Index 2014 - 2023 

3.4.3 The Temperature Condition Index 

The Temperature Condition Index (TCI) extracted from satellite imagery data stands 

as a pivotal metric elucidating the thermal characteristics of the land surface. 

Stemming from the computed Proportion of Vegetation cover (PV), TCI acts as a 

comprehensive indicator of vegetative abundance, exerting a profound influence on 

surface temperature dynamics. This influence stems from vegetative processes such as 

transpiration, altering surface energy balance, and thermal conductivity, modulating 

heat exchange with the atmosphere. Leveraging the Normalized Difference 

Vegetation Index (NDVI) facilitates precise quantification of vegetation density and 

health, enriching the accuracy of TCI assessments (Spadoni, Cavalli, Congedo, & 

Munafò, 2020). 
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Concurrently, the variable emissivity is a fundamental parameter dictating the 

surface's emissive properties. Emissivity exhibits variability across surface types, 

contingent upon factors such as moisture content, surface roughness, and material 

composition. Integrating "PV" into the calculation of "EM" enhances the estimation 

of land surface temperature (LST), a pivotal metric reflecting the thermodynamic state 

of the Earth's surface. 

Subsequently, the computation of LST employs thermal band data from Landsat 8, 

incorporating emissivity values derived from NDVI. Emissivity, indicative of a 

surface's ability to emit thermal radiation, plays a crucial role in refining LST 

estimates, facilitating robust assessments of surface thermal conditions. 

Upon deriving LST values, the Temperature Condition Index (TCI) is computed, the 

thermal state of the land surface. TCI serves as a vital tool for discerning ecological 

processes, agricultural productivity, and broader climate dynamics. The normalization 

of TCI values to a standardized scale of 0 to 1. Summary formula indices showed in 

Table 5. showed TCI in Figure 7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  7 The Temperature Condition Index 2014 - 2023 
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3.4.4 Topographic Data 

Drought is related to topography and local climate conditions, therefore. This study 

also considered information from topography and geographic locations. The Digital 

Elevation Model (DEM), influence on hydrology, vegetation, and climate is therefore 

crucial for this study (Wilson, 2012). the slope from the elevation data can provide 

significant topographic input data. after that normalization scale range of values to a 

standardized scale of 0 to 1. showed in Figure 8. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  8 Elevation (DEM) 

3.4.5 Climate Hazards Group InfraRed Precipitation with Station Data 

This study using precipitation products. The precipitate on datasets for this study were 

obtained from the Climate Hazards Group InfraRed Precipitation with Station Data 

(CHIRPS), covering over past 10 years. The CHIRPS is a satellite-estimated product 

blended with gauge observation from GHCN (Global Historical Climate Network) 

and GSOD (Global Summary of the Data set) data sources. can be extracted yearly. 

(Prodhan et al., 2021) using the ‘bilinear resampling technique’. after that 

normalization scale range of values to a standardized scale of 0 to 1. Showed in 

Figure 9. 
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Figure  9 Climate Hazards Group InfraRed Precipitation with Station Data (CHIPRS)  

2014 – 2023 

3.4.6 The Standard Precipitation Evapotranspiration Index 

The ground station data for the preprocessing of the Standard Precipitation 

Evapotranspiration Index (SPEI) for drought assessment, comprising monthly 

precipitation and temperature data collected from Thai Meteorological Department during 

2013-2023. The analysis is conducted at each station, involving the calculation of the 

SPEI using R packages in R Studio (Montes-Vega, Guardiola-Albert, & Rodríguez-

Rodríguez, 2023). SPEI and its estimation at different time scales (3, 6, 9, and 12 months) 

(Zhang, Wang, Chen, & Bai, 2020). 

The first step is to calculate potential evapotranspiration (PET) using the Hargreaves 

method and minimum, maximum temperatures and the station's latitude are parameters 

(Slavková, Gera, Nikolova, & Siman, 2023). Subsequently, the climatic water balance 

(CWB) is derived by subtracting PET from precipitation data (Bandoc & Prăvălie, 2015). 

This equation, precipitation minus PET, quantifies the interplay between precipitation 

supply and evapotranspiration demand. SPEI is computed across various time scales, 

including 3, 6, 9, and 12 months. The SPEI values are then exported to a CSV file and 

combined for all stations into a single CSV file. 

Afterward, using ArcMap, a feature class is created from latitude and longitude 

coordinates extracted from the CSV file, displaying the point stations. Subsequently, 

spatial interpolation is performed using Inverse Distance Weighting (IDW) (Liu, Yang, 
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(a) 

(b) 

(a) 

(b) 

Yang, & Wang, 2021) within ArcGIS to interpolate data points and generate spatially 

continuous surfaces. Following interpolation, the data is reclassified according to 

predefined criteria outlined in Table 6. After that, the Create Fishnet Tool is creating a 

grid of points covering the study area, which is then clipped to the desired extent. 

Subsequently, the Extract Values to Points tool within the Spatial Analyst toolbox is 

utilized to extract raster values to the point locations with raster information. 

Finally, the data is converted from a feature class to a shapefile format and processed 

using GeoTile Python library within the Jupyter Notebook environment program to 

convert it into raster format through rasterization. each year 2014 – 2023, with SPEI3 and 

SPEI6 This was selected. Showed in Figure 10. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  10 Ground Observations (a) SPEI 3 and (b) SPEI 6 Month scale 
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Table  5 Summary formula remote sensing and ground observation data 

 

 

 Table  6 SPEI classification 

 

 

 

Indices Formula Note Reference 

NDVI 𝑁𝐷𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑟𝑒𝑑)

(𝑁𝐼𝑅 + 𝑟𝑒𝑑)
 

- (Qin et al., 2021) 

LST 

1. Digital Numbers to Spectral Radiance. 

𝐿𝜆 = 𝑀𝐿 × 𝑄𝑐𝑎𝑙 + 𝐴𝐿 

2. Spectral Radiance to Brightness Temperature. 

BT =
K2

In (
𝐾1
𝐿𝜆

+ 1)
− 273.15 

3. Proportion of Vegetation. 

𝑃𝑉 = [
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)
]

2

× 100 

4. Land Surface Emissivity. 

         EM = 0.004 * PV + 0.986 

5. Land Surface Temperature. 

LST = (
𝐵𝑇

1
) + 𝑊 × (

𝐵𝑇

14380
) × ln(𝐸𝑀)  

- (Sobrino, Jimenez, & Paolini, 

2004),(Periasamy, Palanisamy, 

Ravichandran, & Jothiramalingam, 

2021),(Chander, Markham, & Helder, 

2009) 

EVI 𝐸𝑉𝐼 =
(𝑁𝐼𝑅 − 𝑅𝑒𝑑)

(𝑁𝐼𝑅 + 6 𝑥 𝑅𝑒𝑑 − 7.5 𝑥 𝐵𝑙𝑢𝑒 +  1)
 

  

VCI 𝑉𝐶𝐼 =
(𝑁𝐷𝑉𝐼 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)

(𝑁𝐷𝑉𝐼𝑚𝑎𝑥 − 𝑁𝐷𝑉𝐼𝑚𝑖𝑛)
× 100 

NDVImin and 

NDVImax are the 

minimum and 

maximum values of 

the NDVI, 

respectively; the 

The smaller the VCI, 

the more likely a 

drought will occur. 

(X. Li et al., 2023) 

(Qin et al., 2021) 

TCI 𝑇𝐶𝐼 =
(𝐿𝑆𝑇 − 𝐿𝑆𝑇𝑚𝑖𝑛)

(𝐿𝑆𝑇𝑚𝑎𝑥 − 𝐿𝑆𝑇𝑚𝑖𝑛)
× 100 

-  

scaleVCI 𝑠𝑐𝑎𝑙𝑒𝑉𝐶𝐼 =
(𝑉𝐶𝐼 − 𝑉𝐶𝐼𝑚𝑖𝑛)

(𝑉𝐶𝐼𝑚𝑎𝑥 − 𝑉𝐶𝐼𝑚𝑖𝑛)
 

-  

scaleEVI 𝑠𝑐𝑎𝑙𝑒𝐸𝑉𝐼 =
(𝐸𝑉𝐼 − 𝐸𝑉𝐼𝑚𝑖𝑛)

(𝐸𝑉𝐼𝑚𝑎𝑥 − 𝐸𝑉𝐼𝑚𝑖𝑛)
 

-  

scaleTCI 𝑠𝑐𝑎𝑙𝑒𝑇𝐶𝐼 =
(𝑇𝐶𝐼 − 𝑇𝐶𝐼𝑚𝑖𝑛)

(𝑇𝐶𝐼𝑚𝑎𝑥 − 𝑇𝐶𝐼𝑚𝑖𝑛)
 

-  

scaleDEM 𝑠𝑐𝑎𝑙𝑒𝐷𝐸𝑀 =
(𝐷𝐸𝑀 − 𝐷𝐸𝑀𝑚𝑖𝑛)

(𝐷𝐸𝑀𝑚𝑎𝑥 − 𝐷𝐸𝑀𝑚𝑖𝑛)
 

-  

scalePCI 

𝑠𝑐𝑎𝑙𝑒𝑃𝐶𝐼

=
(𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛 − 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑚𝑖𝑛)

(𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑚𝑎𝑥 − 𝑃𝑟𝑒𝑐𝑖𝑝𝑖𝑡𝑎𝑡𝑖𝑜𝑛𝑚𝑖𝑛)
 

-  

SPEI 

1. Potential Evapotranspiration. 

𝑃𝐸𝑇 = 0.0023 ⋅ (𝑇𝑚𝑒𝑎𝑛 − 17.8) ⋅ 𝑇𝑚𝑎𝑥 − 𝑇𝑚𝑖𝑛 ⋅ 𝑅𝑎 

2. SPEI calculation. 

𝐷𝑖 = 𝑃𝑖 − 𝑃𝐸𝑇𝑖 ⋅ 
 

Calculated according 

to the Hargreaves 

method  

(Zhao et al., 2022),(Breiman, 2001) 

,(Vicente-Serrano & Beguería, 2015) 

Grade Type SPEI Value 

1 No drought -0.5 < SPEI 

2 Light drought -1.0 < SPEI ≤ - 0.5 

3 Moderate drought -1.5 < SPEI ≤ - 1.0 
4 Severe drought -2.0 < SPEI ≤ - 1.5 

5 Extreme drought SPEI ≤ -2.0 
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 3.5 Predictive Model 

The machine learning models are Extreme Gradient Boosting (XGBoost), Random 

Forest (RF) and Extra Tree Regression (ETR), which are established in Python 3.11 

through the integration of libraries such as GDAL, Numpy, Matplotlib, Scikit-learn, 

and the XGB Python Library within the Jupyter Notebook environment. which choose 

to predict and estimate drought, which can obtain effective results and calculate 

feature importance from each model using the machine learning method permutation 

importance calculation to rank each variable relevance. 

3.5.1 Extreme Gradient Boosting  

Extreme gradient boosting, or XGBoost, is a gradient boosting algorithm that is 

commonly used in regression problems. XGBoost makes model learning more 

effective by using parallel computing and an additive decision tree training technique 

to turn many weak learners into strong learners. XGBoost can do error assignments 

with this method. The XGBoost algorithm was implemented using the xgboost.xgb 

library. the model follows the below steps. 

In the first step, the GDAL library is using to ingest both image X and image y, with 

the subsequent creation of an array whose dimensions are dynamically adjusted based 

on the raster dataset's characteristics, ensuring uniformity across identical band 

numbers. Following this, an iterative process ensues, systematically traversing each 

band of the image to populate a NumPy array with the pixel values of each band from 

the raster dataset. 

next step, the NumPy library is used to stack arrays horizontally. the features (X) and 

labels (y) into a unified 2-D array denoted as DataX. This operation combines the 

respective elements from both X and y. Subsequently, the train_test_split function 

from scikit-learn is employed to partition the dataset, randomly dividing it into 

training and testing subsets, with 30% of the data allocated for testing and the 

remaining 70% for training. 

In the subsequent step, an XGBoost regressor model is instantiated, with the scoring 

metrics for cross-validation being explicitly defined. The model is trained on the 
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training dataset using the fit method, following which an evaluation is conducted and 

the results are recorded in a text file. 

The subsequent step assessing the importance of each feature predictor variable 

within the model, aimed at identifying the most influential features crucial for 

accurate predictions. This information serves as a for feature selection, elucidating 

data relationships, and potentially enhancing model performance by prioritizing 

critical features. 

Finally, the process culminates in the prediction and exportation of raster data. 

Utilizing a trained model, class labels for a raster dataset are predicted, subsequently 

exported into a new raster file. 

3.5.2 Random Forest Regression 

The Random Forest and several decision trees are put together in parallel, without 

interacting with each other. This means that the predicted values are not sensitive to 

or based on the trained data that was used, and the method does not over-fit. Random 

Forest approach is to combine some separate and parallel decision trees to get to the 

result. To sum up the step of random forest regression. the model follows the below 

steps (Zarei, Mahmoudi, & Moghimi, 2023).  

In the first step, the GDAL library is using to ingest both image X and image y, with 

the subsequent creation of an array whose dimensions are dynamically adjusted based 

on the raster dataset's characteristics, ensuring uniformity across identical band 

numbers. Following this, an iterative process ensues, systematically traversing each 

band of the image to populate a NumPy array with the pixel values of each band from 

the raster dataset. 

next step, the NumPy library is used to stack arrays horizontally. the features (X) and 

labels (y) into a unified 2-D array denoted as DataX. This operation combines the 

respective elements from both X and y. Subsequently, the train_test_split function 

from scikit-learn is employed to partition the dataset, randomly dividing it into 

training and testing subsets, with 30% of the data allocated for testing and the 

remaining 70% for training. 
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In the subsequent step, a Random Forest model is instantiated, with the scoring 

metrics for cross-validation being explicitly defined. The model is trained on the 

training dataset using the fit method, following which an evaluation is conducted and 

the results are recorded in a text file. 

The subsequent step assessing the importance of each feature predictor variable 

within the model, aimed at identifying the most influential features crucial for 

accurate predictions. This information serves as a for feature selection, elucidating 

data relationships, and potentially enhancing model performance by prioritizing 

critical features. 

Finally, the process culminates in the prediction and exportation of raster data. 

Utilizing a trained model, class labels for a raster dataset are predicted, subsequently 

exported into a new raster file. 

3.5.3 Extra Trees Regression  

Extra Trees construct multiple trees like RF algorithms during training time over the 

entire dataset. During training, the ETR will construct trees over every observation in 

the dataset but with different subsets of features (Baykal, Terzi, Yıldırım, & Taylan, 

2023). that although bootstrapping is not implemented in ETR original structure, it 

can add it in some implementations. Furthermore, when constructing each decision 

tree, the ET algorithm splits nodes randomly (Adnan, 2022). The main advantage of 

Extra Trees is the reduction in bias (Zafari, Zurita-Milla, & Izquierdo-Verdiguier, 

2019). This is in terms of sampling from the entire dataset during the construction of 

the trees. Different subsets of the data may introduce different biases in the results 

obtained, hence, Extra Trees prevents this by sampling the entire dataset. Extra Trees 

reduce variance. This is a result of the randomized splitting of nodes within the 

decision trees hance the algorithm is not heavily influenced by certain features or 

patterns in the dataset. 

In the first step, the GDAL library is using to ingest both image X and image y, with 

the subsequent creation of an array whose dimensions are dynamically adjusted based 

on the raster dataset's characteristics, ensuring uniformity across identical band 

numbers. Following this, an iterative process ensues, systematically traversing each 
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band of the image to populate a NumPy array with the pixel values of each band from 

the raster dataset. 

Next step, the NumPy library is used to stack arrays horizontally. the features (X) and 

labels (y) into a unified 2-D array denoted as DataX. This operation combines the 

respective elements from both X and y. Subsequently, the train_test_split function 

from scikit-learn is employed to partition the dataset, randomly dividing it into 

training and testing subsets, with 30% of the data allocated for testing and the 

remaining 70% for training. 

In the subsequent step, an Extra Trees model is instantiated, with the scoring metrics 

for cross-validation being explicitly defined. The model is trained on the training 

dataset using the fit method, following which an evaluation is conducted and the 

results are recorded in a text file. 

The subsequent step assessing the importance of each feature predictor variable 

within the model, aimed at identifying the most influential features crucial for 

accurate predictions. This information serves as a for feature selection, elucidating 

data relationships, and potentially enhancing model performance by prioritizing 

critical features. 

Finally, the process culminates in the prediction and exportation of raster data. 

Utilizing a trained model, class labels for a raster dataset are predicted, subsequently 

exported into a new raster file. 

3.5.4 Cross-validation  

A cross-validation was the choice to assessment of prediction model. A way to test 

prediction models is with K-fold cross-validation. There are k subsets, or folds, in the 

collection. It is trained and tested k times, with a different fold used as the validation 

set each time. To get an idea of how well the model generalizes, performance 

measures from each fold are averaged. This way helps with evaluating, choosing, and 

tuning hyperparameters, giving a more accurate picture of how well a model works. 

Then XGB, RF and ETR are separate data training and testing with 70% and 30% of 

dataset. To verify the validation and stability of the model for predicting SPEI, we 

used the 5-fold cross-validation (CV) method. Briefly, data is randomly divided into 5 
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groups by serial number or time. Four of the groups are used to build a model, which 

is called a training dataset, and the remaining group, called a test dataset, is used to 

validate the model. This process is repeated 5 times, and the average CV R2 

(coefficient of determination), CV RMSE (root mean square error) and CV MAE 

(mean absolute error) are then obtained. During this whole process, the training and 

testing would be done exactly once in each set (fold). It helps to avoid overfitting 

(Santos, Soares, Abreu, Araujo, & Santos, 2018). 

3.6 Accuracy Assessment  
The estimation of drought XGB, RF, ETR models was constructed by machine 

learning methods. The model set 70% for drought training and validated the 

remaining 30% of the data. in this study, using the assessment comparison between 

the regression models was evaluated in terms of the difference between the actual 

values and the predicted statistical. R-squared (R2) and Root Mean Square Error 

(RMSE) and Mean Absolute Error (MAE) were commonly used metrics, R2 helps 

understand the proportion of variance explained by the model (Gond, Gupta, Patel, & 

Dikshit, 2023), while RMSE indicates the average magnitude of the residuals or errors 

made by the model. When comparing models, higher R-squared values and lower 

RMSE values generally indicate better model performance. using equations. These are 

defined as follows. 

𝑀𝐴𝐸 =
1
𝑛

∑  

𝑛

𝑖=1

|𝑃𝑖 − 𝑂𝑖|

𝑅𝑀𝑆𝐸 = √
1
𝑛

∑  

𝑛

𝑖=1

(𝑃𝑖 − 𝑂𝑖)2

𝑅2 =
∑  𝑛

𝑖=1 (𝑃𝑖 − 𝑂̅𝑖)2

∑  𝑛
𝑖=1 (𝑃𝑖 − 𝑂̅𝑖)2

 

 

3.7 Mapping the Spatial Distribution Drought 

After training the drought models and obtaining suitable models and significant 

factors, their accuracy was evaluated using R2, Root Mean Square Error (RMSE), and 

Mean Absolute Error (MAE) for the study area. The model was then used to calculate 

drought values for each pixel each year, and then, to further analyze the spatial 
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distribution of drought, the zonal statistical technique within the QGIS geographic 

information system (GIS) platform was employed.  

This technique facilitated the delineation of subdistrict areas within northeast 

Thailand and the calculation of their respective drought severity indices. Specifically, 

the average drought values within each subdistrict were computed, providing insights 

into the localized impact of drought, and allowing us to visualize the prediction of 

drought. The final method is mapping the spatial distribution of drought in northeast 

Thailand over a period from 2014 to 2023. ArcMap displays this method. 

3.8 Summary of this chapter 

In conclusion, Chapter 3 provides the methodology utilized for drought dynamics in 

northeast Thailand, primarily based on machine learning models and integrating 

remote sensing and ground observation data. The research area, characterized by the 

Korat Basin and the Mun River, is thoroughly described to provide context for the 

study's scope. The workflow encompasses data collection, preprocessing, and model 

training and evaluation. Remote sensing data from Landsat 8, including vegetation 

indices and topographic information, are combined with ground observation data from 

the Thai Meteorological Department to compute various drought indices. 

The preprocessing phase involves steps such as data loading, index computation, and 

image merging using the GDAL library. Essential indices like the Vegetation 

Condition Index (VCI), Enhanced Vegetation Index (EVI), Temperature Condition 

Index (TCI), and precipitation products from the Climate Hazards Group InfraRed 

Precipitation with Station Data (CHIRPS). After that, the datasets are calculated and 

normalized across datasets.  

Subsequently, the predictive modeling section details the implementation of machine 

learning algorithms, including XGB, RF, and ETR for drought estimation. Each 

model training and evaluation with cross-validation employed to assess prediction 

performance and ensure model robustness. Accuracy assessment metrics such as R-

squared (R2), Root Mean Square Error (RMSE), and Mean Absolute Error (MAE) are 

utilized to evaluate model performance, providing insights into the spatial distribution 

and severity of drought across northeast Thailand. 
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CHAPTER 4 RESULTS AND VALIDATION 

This chapter presents the experiment and the result of machine learning to evaluate 

the spatio temporal of drought described in Chapter 3 over northeast of Thailand. The 

results are the following. 

4.1 Analysis of Spatio-Temporal of drought 
The Precipitation data analysis Precipitation data collected from 11 stations of the 

Thai Meteorological Department which had data for 10 years from 2014 to 2023. The 

average annual precipitation is in the range of 1,100-1,800 mm per year, with the 

highest average in 2022 at 1,848 mm. and the lowest mean value in 2018 at 1,175 

mm. showed in Figure 11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  11 Average annual precipitation from TMD (2014-2023) 

 

The results of the Standardized Precipitation Evapotranspiration Index (SPEI) across 

diverse temporal scales, ranging from 3, 6, 9, and 12 months, are presented. Figure 12 

illustrates the temporal evolution of drought patterns aggregated monthly from 2014 

to 2023 at the Northeast Thailand station. Over shorter durations, the SPEI index 

exhibits rapid fluctuations, whereas its variability diminishes with increasing temporal 

spans, resulting in protracted periods of calculated drought conditions. This 

phenomenon is attributed to the utilization of longer periods of rainfall data in the 
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computation process. Consequently, the selection of the temporal scale for rainfall 

data computation hinges on the specific objective of the analysis, whether it pertains 

to short-term drought monitoring or a broader overview across extended periods. 

The short-term reflects cumulative precipitation patterns over cumulative with SPEI 3 

scale precipitation patterns. Specifically, the investigation identified instances of 

drought, as indicated by the SPEI values. Notably, drought conditions were observed 

in June 2015, signifying a period of reduced precipitation and potential water scarcity. 

Subsequently, drought was again identified in April 2016, suggesting a persistence of 

reduced precipitation levels. Furthermore, the end of 2018 and 2019 marked drought 

conditions, emphasizing the severity of precipitation. Additionally, the onset of 

drought at the beginning of 2020 and 2021 signifies a period of reduced precipitation 

and potential water scarcity. 

The long-term reflects cumulative precipitation patterns over with SPEI 12. This 

investigation discerned negative SPEI values from mid-year 2015 to 2016, indicative 

of incipient drought conditions. Subsequently, during mid-year 2018 to 2020, the 

persistence of negative values underscores prolonged drought conditions across 

various months. showed in Figure 12. 
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(a) 

(b) 

(c) 

(d) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure  12 The evolution of SPEI indicating the development of drought from (a)  

3 months, (b) 6 months, (c) 9 months, (d) 12-month time scale in the northeast of  

Thailand from 2014 - 2023 
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4.2 Comparing Performance of ML Models 

4.2.1 Performances of Machine Learning Models 

Traditional methods are often constrained by various factors and can incur high costs. 

In contrast, machine learning (ML) models leverage with RS and the capability to 

analyze extensive geographic areas, providing global coverage with accuracy. This 

section compares the performance of three machine learning models: XGB, RF, and 

ETR, in predicting drought indices based on remote sensing as independent variables 

(X) and ground observation data as the dependent variable (y). The evaluation 

employs metrics such as R2 and RMSE to assess the accuracy and reliability of the 

models in capturing the intricate relationships between spectral indices and drought 

conditions in the northeast region of Thailand. 

The models were implemented in a Jupyter Notebook environment. A training set was 

created by randomly selecting 70% of the samples from the dataset, while the 

remaining 30% comprised the test set. Model parameters were fine-tuned using the 5-

fold cross-validation (CV) method. In this process, the training set of the RF model 

was divided into five partitions, with four partitions utilized for training and one for 

validation. The CV score for each fold was averaged to ensure a comprehensive 

assessment of model reliability and accuracy. 

Table  7 Summary parameter of Machine learning 

 

Different models produced different outcomes. when integrated with data from 

remote sensing and environmental variables. The study compared the performance of 

different machine learning models, including XGB, RF, and ETR, in predicting 

drought indices (SPEI 3 and SPEI 6) using remote sensing and environmental 

variables in Northeast Thailand. The results showed that all three models exhibited 

varying levels of precision across different metrics and datasets. shown accuracy 

assessment of the machine learning in Table 8. 

Characteristics Descriptions 

Model XGBoost, Random Forest, Extra trees 

Parameter n_estimators = 200, K_fold = 5 

Dependent variable SPEI3, SPEI6 

Independent variables VCI, EVI, TCI, DEM, CHIPRS 
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Table  8 Accuracy assessment of the Machine Learning 

 

For SPEI 3, the XGBoost model demonstrated an overall precision with R2 ranging 

from 63.24% to 92.47%, RMSE spanning from 1.35% to 34.11%, and MAE 

fluctuating between 0.07% and 19.9%. Similarly, the Random Forest model exhibited 

R2 ranges of 69.38% to 93.98%, RMSE varying between 2.23% and 32.93%, and 

MAE spanning from 0.12% to 16.7%. Moreover, the Extra trees model showcased R2 

ranges from 65.26% to 94.28%, RMSE spanning 1.58% to 33.28%, and MAE 

fluctuating between 0.09% and 18.55%. 

For SPEI 6, the XGBoost model demonstrated an overall precision with R2 ranging 

from 79.23% to 91.59%, RMSE spanning from 3.52% to 35.97%, and MAE varying 

between 0.29% and 20.27%. Likewise, the Random Forest model displayed R2 ranges 

from 74.19% to 91.59%, RMSE fluctuating between 3.97% and 32.95%, and MAE 

spanning from 0.33% to 15.79%. Additionally, the Extra Trees model showcased R2 

ranges from 78.73% to 94.8%, RMSE ranging from 4.55% to 31.93%, and MAE 

varying between 0.45% and 18.14%. showed overall accuracy in Figure 13. 

SPEI ML Accuracy 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 

SPEI3 XGBoost MAE 6.12 2.24 0.8 8.75 14.5 14.7 19.9 16.3 0.9 0.07 

  RMSE 14.1 8.3 5.05 17.6 25.9 24.4 34.1 28.2 5.67 1.35 

  R2 88.6 72.1 63.2 87.5 81.4 92.4 83.0 82.4 75.1 66.1 

 RF MAE 5.07 1.63 0.55 5.95 11.0 10.6 16.7 13.4 1.03 0.12 

  RMSE 13.8 7.83 4.56 16.1 24.3 21.9 32.9 26.2 6.27 2.23 

  R2 89.1 75.2 69.7 89.4 83.5 93.9 84.2 84.8 71.1 69.3 

 ET MAE 5.04 2.19 0.75 6.55 11.5 11.6 18.5 15.6 1.2 0.09 

  RMSE 12.2 8.27 4.97 14.8 22.5 21.3 33.2 28.0 6.08 1.58 

  R2 91.4 72.1 65.2 91.1 85.9 94.2 83.9 82.6 73.1 69.7 

             

SPEI6 XGBoost MAE 2.07 20.2 11.6 10.1 19.2 8.93 9.61 0.29 0.5 2.4 

  RMSE 12.1 35.4 27.1 25.0 35.9 20.7 20.4 4.29 3.52 10.7 

  R2 79.2 83.7 91.5 89.7 85.8 91.0 90.2 80.9 90.5 87.9 

 RF MAE 2.36 15.7 9.09 7.52 14.8 5.04 6.38 0.33 0.52 2.16 

  RMSE 13.5 32.6 25.8 24.0 32.9 17.2 18.6 4.91 3.97 12.1 

  R2 74.1 86.1 92.3 90.6 88.1 93.8 91.8 77.9 88.1 84.8 

 ET MAE 2.36 18.1 9.45 8.31 15.4 5.46 7.55 0.45 0.76 2.82 

  RMSE 11.7 31.9 22.9 22.1 31.4 15.8 18.5 4.92 4.55 12.0 

  R2 80.3 86.7 94.0 92.0 89.2 94.8 91.9 78.7 84.8 85.0 
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In conclusion, the Extra Trees model emerges as the most promising candidate for 

drought index prediction in the Northeast region of Thailand, demonstrating 

competitive performance across various metrics and datasets. The analysis, aimed at 

assessing the congruence between predicted and observed values, consistently 

performed across various metrics. For both SPEI3 and SPEI6, the correlation 

coefficients (R values) ranged from 65.26% to 94.28% and 78.73% to 94.8%, 

respectively, indicating the model's ability to capture the nuances of drought 

dynamics. This proficiency not only elucidates the model's discernment of the relative 

significance of pertinent drought variables but also indicates its reliability in 

forecasting. The Root Mean Squared Error (RMSE), serving as an indicator of 

predictive capability, exhibited low values spanning from 1.58% to 33.28% and 

4.55% to 31.93% for SPEI3 and SPEI6, respectively. Such minimal RMSE values 

signify a close relationship between predicted and observed values, meaning that 

prediction errors were comparatively low. Likewise, Mean Absolute Error (MAE) 

ranges of 0.09% to 18.55% and 0.45% to 18.14% for SPEI3 and SPEI6, respectively, 

further indicate the model's accuracy, with lower MAE values indicating performance 

in predicted and observed values. Moreover, this study uses cross-validation for a 

model assessment approach that effectively mitigates the risk of overfitting the 

training data. the ETR model used to generate drought distribution maps in the 

Northeast region of Thailand. Its performance and accuracy make it a compelling 

choice for further research and practical applications in drought assessment and 

monitoring. 
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Figure  13 Overall accuracy: (a) R2, (b) RMSE, (c) MAE from SPEI 3 and (d) R2,  

(e) RMSE, (f) MAE from SPEI 6 
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4.2.2 The Importance of Variables 

This study investigates the influence of remote sensing and ground observation 

variables on the estimation of SPEI 3 and SPEI 6 scales spanning from 2014 to 2023. 

The variables impact was assessed through model influence and permutation 

importance calculation, enhancing the comparability of these variables, and revealing 

correlations among all selected parameters. The prioritization factor of three models is 

illustrated in Figure 14 indicating the significance of these variables across different 

modeling approaches. 

SPEI 3 importance values from 2014 to 2023 reveals notable patterns across the three 

models. In the XGB model, CHIRPS emerges as the most critical variable, 

constituting 35.13% to 61.85% of the total importance, followed by DEM (20.09% to 

29.74%), TCI (1.94% to 18.88%), EVI (2.50% to 12.15%), and VCI (3.36% to 

11.64%). Similarly, in the RF model, CHIRPS remains paramount, ranging from 

34.88% to 66.85%, followed by DEM (21.36% to 29.21%), TCI (4.55% to 19.26%), 

EVI (2.30% to 14.32%), and VCI (2.57% to 7.48%). The ETR model also emphasizes 

CHIRPS (27.52% to 62.79%), DEM (19.65% to 30.33%), TCI (7.05% to 21.39%), 

VCI (3.87% to 13.09%), and EVI (3.28% to 12.85%). 

SPEI 6 importance values for the same period unveils consistent trends across the 

models. In the XGB model, CHIRPS dominates (36.81% to 67.77%), followed by 

DEM (13.83% to 33.83%), TCI (5.5% to 18.88%), EVI (3.01% to 13.58%), and VCI 

(1.90% to 9.56%). Likewise, in the RF model, CHIRPS remains crucial (40.87% to 

72.64%), followed by DEM (14.18% to 35.63%), TCI (5.22% to 15.86%), EVI 

(2.42% to 13.20%), and VCI (1.87% to 6.49%). The ETR model highlights CHIRPS 

(28.86% to 67.08%), DEM (18.86% to 37.32%), TCI (6.29% to 21.67%), EVI (3.83% 

to 14.24%), and VCI (3.92% to 11.45%). Showed in Figure 14.  

In conclusion, the study investigated the significance of remote sensing and 

topography variables in accurately estimating the Standardized Precipitation 

Evapotranspiration Index (SPEI) at both 3 and 6-month scales from 2014 to 2023. 

Through permutation importance calculations, it enhanced the comparability of 

variables and unveiled correlations among them. Across three models (XGB, RF, and 

ETR), CHIRPS (precipitation data), elevation (DEM), and TCI (Temperature 
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Condition Index) emerged as the most critical variables for both SPEI 3 and SPEI 6 

estimations. While other variables like EVI (Enhanced Vegetation Index) and VCI 

(Vegetation Condition Index) also held importance, they played secondary roles 

compared to CHIRPS, elevation, and TCI. These studies examine the role of certain 

variables in estimating SPEI, thus aiding water resource management and drought 

monitoring. 

 

 

 

 

 

 

 

 

Figure  14 The relative importance (%) of the drought factors for (a) XGBoost, (b) 

Random Forest, (c) Extra Trees from SPEI 3 and (d) XGBoost, (e) Random Forest, (f) 

Extra Threes from SPEI 6 

4.3 Mapping The Spatial Distribution Drought 

The spatial distribution maps the definitive results of this study conducted Leveraging 

the ETR model the creation of drought distribution maps in northeastern Thailand 

over a period from 2014 to 2023. The region's topography predominantly consists of 

the Korat plateau, characterized by extensive flat terrain. The terrain gradually slopes 

from west to east, culminating in high mountains along the periphery of the area. 

Predominantly rocky, the terrain also features vast plains, forming expansive basin 

lands. The average annual precipitation stands at approximately 1,400 mm, with 

temperatures ranging between 19.5°C and 36.1°C, delineating the climatic profile of 

the region. 

Trend long-term drought indicators SPEI 6 consistently exhibited a higher frequency 

of area drought category compared to short-term indicators SPEI 3 This suggests the 

cumulative impact of prolonged precipitation deficits on drought occurrences. 

(a) (b) (c) 

(f) (e) (d) 
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4.3.1 Short-Term Drought Occurrences 

In this study, conducted an analysis of drought occurrences in northeastern 

Thailand. the occurrences of short-term light droughts in 2014, predominantly 

impacting Ubon Ratchathani  (UBN), which reappeared in 2017, followed by a 

more extensive influence across the study area in 2018. Additionally, moderate 

drought conditions were discerned in Buriram  (BRM) during this timeframe, 

persisting through 2019. Extreme drought affected 0.47% of the total area, 

severe drought impacted 0.56%, moderate drought affected 24%, and light 

drought was observed in 45% of the entire area, as illustrated in Figure 16. 

Noteworthy is the identification of light drought conditions in Sisaket (SSK) in 

2019, alongside sporadic occurrences of moderate drought in Buriram (BRM). 

Meanwhile, Ubon  Ratchathani (UBN) experienced notable instances of 

moderate drought, with Nakhon Ratchasima (NMA) notably afflicted by 

extreme drought conditions. consistent with the data that the drought situation 

in Nakhon Ratchasima (NMA) Province is still ongoing. The water volume in 4 

large water storage reservoirs in the province continues to decrease. (Office of 

Natural Resources and Environmental Policy and Planning). This trend 

persisted into 2020 with a moderate drought in Nakhon Ratchasima (NMA) and 

a light drought in Buriram (BRM) and Surin (SRN). Furthermore, similar 

conditions were observed in 2021 in these areas. Showed in Figure 15 . 
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Figure  15 Short-term drought distribution map in the northeast Thailand  

from 2014 – 2023 

 

 

 

 

 

 

 

 

 

 

Figure  16 Area based on drought classes SPEI 3 
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4.3.2 Long-Term Drought Trends 

Trend long-term drought indicators (SPEI 6) consistently exhibited a higher 

frequency in the area drought category. there was a slight occurrence of a 

long-term drought in 2014, whereas 2015 witnessed a severe drought in 

Ubon Ratchathani (UBN). This trend of moderate drought persisted through 

2016 and 2017, In 2018, severe drought affected 0.47% of the total area, 

while moderate drought encompassed 27% and light drought covered 51% of 

the entire region. Notably, as illustrated in Figure 18.  severe drought 

exhibited a pronounced occurrence in the north of Buriram (BRM) during 

2018, coinciding with instances of moderate drought in Nakhon Ratchasima 

(NMA) and various areas within Surin (SRN). In 2019, the study area 

experienced a prevalence of light drought affecting 83% of the total area, 

accompanied by a moderate drought affecting 12%. Notably, a distinct area 

comprising 1.4% encountered severe drought conditions, predominantly 

observed in Surin (SRN).  

Additionally, in 2020, drought conditions were observed in Nakhon 

Ratchasima (NMA). as shown in figure 17. Significant insights were 

garnered through the analysis of area percentages extracted from the drought 

maps, indicating a notable increase in the affected areas across different 

drought classes over extended time periods, specifically for SPEI 3 and 

SPEI 6-month scales, as shown in figure 18. This observation implies that 

prolonged periods of deficient precipitation contribute to the heightened 

frequency of drought occurrences. Such a thorough examination underscores 

the different distribution of drought events across various districts of 

northeast Thailand throughout the period spanning 2014 to 2023. Showed in 

Figure 17.  
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Figure  17 Long-term drought trends distribution map in the northeast of Thailand 

from 2014 – 2023 

 

 

 

 

 

 

 

 

 

 

 

Figure  18 Area based on drought classes SPEI 6 
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4.4 Summary of Experiment and Result  

In conclusion, the assessment of drought and analyzed using remote sensing and ground 

observation data at a resolution of 30 meters using three machine learning algorithms XGBoost, 

Random Forest, and Extra Threes. The purpose of this study is to analyze and investigate 

various droughts and generate a drought map in the northeast of Thailand for the period 2014–

2023. The conclusions from this study are summarized as follows. 

 1) This study analysis the vital role of remote sensing and ground observation variables 

spanning from 2014 to 2023. Utilizing permutation importance calculations, the study not only 

enhanced the comparability of variables but also revealed intricate correlations among them. 

Across three predictive models (XGBoost, Random Forest, and Extra Trees), the Extra Trees 

model emerges as the most promising candidate for drought index prediction in the Northeast 

region of Thailand, demonstrating competitive performance across various metrics and datasets. 

precipitation data (CHIRPS), elevation (Digital Elevation Model), and temperature 

(Temperature Condition Index) emerged as the most influential variables for estimating both 

SPEI 3 and SPEI 6. Although variables such as the Enhanced Vegetation Index (EVI) and 

Vegetation Condition Index (VCI) also contributed significantly, their roles were secondary 

compared to CHIRPS, elevation, and TCI. These findings on the nuanced interplay of variables 

in SPEI estimation, offer valuable insights for water resource management and drought 

monitoring in the northeast of Thailand. 

 2) This study analysis both short-term and long-term precipitation patterns, utilizing the 

Standardized Precipitation Evapotranspiration Index (SPEI) as a metric to gauge drought 

conditions. Short-term observations revealed instances of drought, particularly notable in June 

2015 and April 2016, with recurring drought conditions evident towards the end of 2018 and 

2019, as well as at the onset of 2020 and 2021. These findings underscore the cyclical nature of 

reduced precipitation and the consequential threat of water scarcity within shorter time frames. 

Furthermore, this study investigation into long-term precipitation trends, evaluated over a SPEI, 

revealed sustained negative SPEI values from mid-year 2015 to 2016, indicative of emerging 

drought conditions. Notably, from mid-year 2018 to 2020, the persistent negativity of SPEI 

values highlighted a protracted period of drought across multiple months, the severity and 

duration of the drought.   
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CHAPTER 5 CONCLUSION AND FUTURE WORK 

5.1 Conclusion 

RS technology has significantly advanced the field of mapping the spatio-temporal 

dynamics of drought in Northeast Thailand. This area is situated within the tropical 

zone, characterized by predominantly sandy soil that has a limited capacity to retain 

water. The frequency and severity of droughts have increased, causing significant 

damage to the agricultural and economic sectors, resulting in reduced crop yields and 

hardships for farmers. The terrain is on the Korat plateau because most of it is a 

plateau. This study the challenge of integrating remote sensing with ground 

observation data to improve drought monitoring. Ground-based indicators offer 

precision but limited spatial coverage, while RS indices cover larger areas with lower 

accuracy. To solve this problem, machine learning algorithms were utilized to 

combine sources of remote sensing data and ground observation. This approach 

enhances spatial resolution and accuracy in drought monitoring in Northeast Thailand. 

This study found patterns of drought occurrences, attributing them predominantly to 

insufficient rainfall. Noteworthy drought events are observed in 2018, 2019, and 2020 

for short-term droughts, and in 2015, 2016, 2018, 2019, and 2020 for long-term 

droughts. These findings align with the recurring El Niño phenomenon, which 

typically induces diminished rainfall across the study area. Data from the Hydro-

Informatics Institute of the Ministry of Higher Education substantiate these 

observations, accentuating the sustained presence of El Niño-induced drought 

conditions from late 2014 through 2016 and a resurgence in 2019. The consistent 

association between El Niño occurrences and reduced rainfall highlights its pivotal 

role in precipitating drought phenomena within the region.  

This study analyzes the vital role of RS and ground observation variables spanning 

the years 2014 to 2023, employing permutation importance calculations. Using three 

machine learning models (XGBoost, Random Forest, and Extra Trees), it is revealed 

that precipitation data (CHIRPS), elevation (Digital Elevation Model), and 

temperature (Temperature Condition Index) are the most influential variables for 

estimating both short-term (SPEI 3) and long-term (SPEI 6) drought indices. While 

variables like the Enhanced Vegetation Index (EVI) and Vegetation Condition Index 
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(VCI) also contribute significantly, their impacts are found to be secondary when 

compared to CHIRPS, elevation, and TCI. These insights have implications for water 

resource management and drought surveillance in northeast Thailand. 

The spatial mapping of drought distribution in northeast Thailand from 2014 to 2023 

was conducted using the Extra Trees model. Long-term drought indicators, 

particularly SPEI 6, consistently demonstrate a higher frequency of area drought 

categories compared to short-term indicators like SPEI 3. Analysis of short-term 

drought events reveals temporal patterns, including predominant short-term light 

droughts in 2014, with a resurgence in 2017 and expanded influence in 2018. 

Moderate drought conditions persisted in Buriram (BRM) through 2019, while 

significant instances of drought, ranging from light to extreme severity, were 

observed across different areas, notably impacting Sisaket (SSK) in 2019 and sporadic 

moderate droughts in Buriram (BRM). Substantial instances of moderate to extreme 

drought were reported in Ubon Ratchathani (UBN) and Nakhon Ratchasima (NMA) 

based on data from the Office of Natural Resources and Environmental Policy and 

Planning. Long-term drought indicators (SPEI 6) consistently exhibited higher 

frequencies, particularly notable in 2015 and 2018, affecting various parts of northeast 

Thailand. 

The main initiatives of the thesis are as follows: 

(1) Applying fusion of drought index from the Landsat 8 satellite and ground 

observations for the study area. It provides insights into environmental 

parameters and precise meteorological measurements. 

(2) Compared the performance of various ML models to identify the most 

effective approach for drought monitoring in the study area. 

(3) Explored spatiotemporal trends in drought distribution to inform water 

management and mitigation strategies. 

5.2 Future work and Suggestions 

In summary, the results of the research can be used as a guideline in planning drought 

and water management.  Future research could benefit from integrating additional 

data sources. Incorporating data from sources such as soil moisture measurements, 
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groundwater levels, and land use and land cover data could provide a more 

understanding of drought dynamics and improve the accuracy of drought prediction 

models. 

However, in reflecting on the findings presented in this study, it is to certain inherent 

limitations. The study focused on the northeast Thailand, which warrants caution 

when extrapolating the results to other geographical contexts. Variations in 

environmental conditions, other factors, and land use practices across different 

regions may influence the applicability and generalizability of the findings. 

Furthermore, the choice of machine learning models, including XGBoost, Random 

Forest, and Extra Trees, along with their associated parameters, introduces variability 

in the outcomes observed. It is important to acknowledge that the performance and 

efficacy of these models may differ in distinct geographic settings, owing to 

disparities in data availability, topography characteristics, and climatic pattern. 

Future research should extend the geographic scope, encompassing diverse regions 

beyond northeast Thailand, to gain a more comprehensive of drought dynamics and 

management strategies. Exploring alternative modeling approaches and incorporating 

additional environmental variables could further insights into the complexities of 

drought occurrence and mitigation efforts. Therefore, future research should be 

conducted to extract the information with deep learning methods or neural network 

and monitor the drought. remote sensing data and evaluating the impact of these data 

changes on the regional environment.  
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APPENDIX A 

The information of Ground Observation data from Northeast of Thailand 

NO STATION NAME LATITUDE LONGITUDE 

1 407301 Ubonratchathani 15.2455 104.8711 

2 407501 Ubonratchathani (Center) 15.2408 105.0195 

3 409301 Srisaket 15.0869 104.3269 

4 431201 Nakonratchasima 14.9699 102.0803 

5 431301 Nakonratchasima (Pakchong) 14.6437 101.3159 

6 431401 Nakonratchasima (Chokchai) 14.7396 102.1623 

7 432201 Surin 14.8758 103.4939 

8 432301 Surin (Agriculture) 14.8926 103.4466 

9 432401 Surin (Tatoom) 15.3178 103.6767 

10 436201 Buriram 15.2273 103.2422 

11 436401 Buriram (Nangrong) 14.6326 102.7156 
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APPENDIX B 

The average monthly rainfall data from Northeast of Thailand 

   MONTH (MM) 

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1 407301 2013 1.1 0 41.7 95.3 199.7 142.1 396.2 115.7 502.1 80.4 4.6 66.3 

2 407301 2014 0 8.4 0.1 123 54.1 715.8 664.8 162.6 442.6 114.2 0 5 

3 407301 2015 0 18.6 0.2 7.4 94.4 157.2 314.1 180.6 271.5 197.5 17.6 0 

4 407301 2016 4.8 0 0 60.7 216.1 494.7 185.1 155 347.9 105.3 4.8 14 

5 407301 2017 0.4 0 63.9 69.4 343.2 285.2 488.9 233 153.8 79.7 7 0.4 

6 407301 2018 0 1.5 72.4 51.4 166.3 352.8 398.2 377.4 387.7 96.4 14.9 12 

7 407301 2019 0 9.5 12.6 9.5 249.8 77.5 252.6 350.1 508.7 53.4 17.4 0 

8 407301 2020 0 0 1.2 29.1 124.2 201.5 237.2 202.2 347.4 182.8 1.4 0.1 

9 407301 2021 0 2.5 3.9 46.1 139.4 257.9 263.1 241.1 347 186.7 0 6.1 

10 407301 2022 3.1 29.5 60.8 160.3 386.2 61.7 292.7 388.5 666.7 165.5 34.2 0 

11 407301 2023 7.7 48 0 37.1 231.6 218.1 335 189.2 197.9 37.6 10.5 1.5 

12 407501 2013 0.7 0 37.2 45.2 322.3 75.8 461.2 164.8 488.1 86.9 5.4 111 

13 407501 2014 0 0 0.9 84.6 102.6 563.9 630.7 196.5 218 80.1 0 3.6 

14 407501 2015 0 42.1 5 28.9 98.6 227.5 288 186.9 210.7 206.4 35.8 0 

15 407501 2016 25.5 0 1.2 40.4 243.2 523.9 265.2 173 520.4 93 13.4 6.6 

16 407501 2017 0.6 0.2 43.9 109.8 362.2 258.6 437.1 316.3 152.9 101.3 10.5 1.5 

17 407501 2018 0 0 140 98.8 170.5 291.1 309.5 315.4 317 77.3 11.1 0.9 

18 407501 2019 0 0 19.5 91.4 236.3 102 318.5 341.9 554.5 26.6 7 0 

19 407501 2020 0.9 0 1.4 55 214.8 163.2 242 283.1 439.4 194.7 0.4 0.2 

20 407501 2021 0 7.3 8.2 87.1 127.7 261 360.8 295.2 375 231.3 0 4.7 

21 407501 2022 2 42.2 70.3 134.8 347.9 46 429.1 557.2 653.9 141.5 25.6 0 

22 407501 2023 35.7 0 0 29.3 105.4 342.6 475.1 300.6 205.7 135.3 14.8 12 

23 409301 2013 0.3 0 9.8 116.6 188.7 197.1 268.7 89 546.8 73.4 55 46.3 

24 409301 2014 0 0.3 0.5 10.9 33.3 288.2 262.6 190.2 279.4 76.6 0 5.3 

25 409301 2015 0 53.5 7.3 23.1 66.7 188.9 490.9 188.2 256.1 84.8 23 0 

26 409301 2016 0 0 0 12.5 133.8 367.4 183.6 147.4 307.1 135.7 22 1.1 

27 409301 2017 0.5 8.9 59.8 33 434.5 66.9 410 342.6 165 131.8 10.1 0.3 

28 409301 2018 1.5 8.5 66.1 44.5 154 96.1 358.2 294.3 338 60.7 13.6 0.1 

29 409301 2019 0 0 1.8 78.7 245.3 119.6 156.9 187.2 364.4 41.3 7.3 0 

30 409301 2020 1.8 0 2.8 66.3 143 146.8 269.8 268.3 396.8 276.7 0.1 0 

31 409301 2021 0 1 1 37.6 155.4 140.2 197.3 150.7 445.5 249 0.1 4.1 

32 409301 2022 0.3 10.3 60.6 81.3 237.3 102.7 310.9 234.2 510.2 119 21.8 0 

33 409301 2023 38.4 0.9 1 75.7 165.7 303.7 441.8 441.5 292.8 180.8 4.6 1.2 

34 431201 2013 4.1 0 33.6 19.7 51.6 61.4 260.9 167.8 355.6 321.7 29.3 0.3 

35 431201 2014 0 2.7 27 83.8 194.3 53.9 98.7 226 219.9 56.1 13.9 0.4 

36 431201 2015 0.9 17.2 47.1 26.6 74.1 92.1 242.7 278.6 284.2 87 17.3 3.3 

37 431201 2016 38 0 0 16.1 87.8 77 231.2 154.2 329.2 118.8 37.8 0 

38 431201 2017 6 0.1 245.6 13.4 220.9 280.4 102.9 296.4 350.6 97.8 28.2 10.5 

39 431201 2018 2.6 78.5 28.5 140.9 122.1 95.8 149 87 139.1 106.8 7.9 4.1 

40 431201 2019 0 13.3 14 21.2 102 54 40.7 155.7 157 85.4 6.8 0 
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   MONTH (MM) 

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

41 431201 2020 0 0 34.5 36.9 211.3 239.5 147.9 236.1 265.9 282.2 2.7 0 

42 431201 2021 0 13.2 19.6 229.9 75.2 37.2 201.9 79.2 267.5 242.2 0 38.1 

43 431201 2022 1.9 8.1 67.4 94.3 242.7 83.7 243.3 125.2 307.8 109.2 63.8 0 

44 431201 2023 36.8 2.7 0.9 0.7 107.6 279.9 198.9 172.9 195.9 169.4 5.6 1.2 

45 431301 2013 46.3 29.5 13.8 91.5 80.8 150.8 59.7 196.3 379.6 266.3 6.7 0.7 

46 431301 2014 0 0.5 62.4 107.7 139.4 43.7 52.8 205.1 97.4 76.9 78.8 13.6 

47 431301 2015 11 20.6 132.4 56.6 54.1 78.5 64 85 261.9 115.5 44.2 68.1 

48 431301 2016 35.7 0 23.9 24.9 47.2 132.1 104.1 74.9 158 105.6 56.7 0 

49 431301 2017 3.2 9.3 196.9 71.8 232.4 110.1 175.1 149.7 162.2 268.1 15.5 5.7 

50 431301 2018 55.1 41.2 22.7 112.8 343.7 121.6 78.3 276.6 150.2 108 0 120.4 

51 431301 2019 0 6.6 23.7 146.4 126.1 129.8 120.4 165.7 233.1 11.1 8.4 0 

52 431301 2020 0 0 58.4 95.5 132.8 102.8 107.9 66.9 366.4 212.6 5.5 0 

53 431301 2021 0 6.9 96 168.7 100.3 43.6 140.9 109.4 291.1 138.4 23 0 

54 431301 2022 3.6 104.1 139.3 28.9 155.3 106.5 260.9 173.1 348.3 36.8 96.7 0 

55 431301 2023 4 14.1 0.9 12.3 55.3 76 54.4 72.2 149.6 380.2 57.5 15.6 

56 431401 2013 9.3 7.5 22.7 117.6 93.2 92.3 229.2 119 387.4 301.4 25.2 4.8 

57 431401 2014 0 0.2 36.5 27.9 51 29.7 111.3 171.7 231.7 203.6 78.1 3.5 

58 431401 2015 27.6 11 44.1 70.2 72.5 105.6 138.7 100.9 274.8 170.8 31.3 0.7 

59 431401 2016 33.7 0 0 45.6 102.3 207.2 175.3 74 170.6 165.2 29.7 0 

60 431401 2017 9.1 0.3 111.8 41.8 234.4 198.5 67.7 182.4 48.2 156.9 42.9 10.9 

61 431401 2018 1.1 42.9 1.3 141.4 165.6 76.6 93.3 110.1 148.5 67.6 34.7 7.9 

62 431401 2019 0 1 2 57.1 25.9 57.6 60.3 113.5 147.2 107 2.3 0 

63 431401 2020 0 0 32.1 50.1 170.2 126.5 115.2 198.1 167.1 315.3 3.3 0 

64 431401 2021 0 19.3 4.4 133.6 88.2 68.3 137.2 193.6 390.1 244.3 5.8 68.7 

65 431401 2022 0.1 37.9 91.5 120.3 98.4 55.2 225.7 200.2 222.8 131.4 171.7 0.1 

66 431401 2023 0 56.8 11.6 129.4 181.8 30.9 66 62 25.6 149.5 0 0 

67 432201 2013 3.5 13.4 6.6 30.6 172.5 234.5 246.6 172.1 591.9 99.7 9.6 27.3 

68 432201 2014 0 0 0.6 48.2 171.3 137.2 257.2 351.7 162.7 163.5 94 2.1 

69 432201 2015 0.1 21.4 34.6 122.8 125.6 112 322.4 210.2 258.5 41.2 9.8 0 

70 432201 2016 16 0 0 27.5 146.4 193.1 261.2 323 254.8 135.8 48.4 0 

71 432201 2017 3.9 2.4 94.4 19.5 341.9 151.4 342.3 258.6 152.8 119.6 23.7 1.5 

72 432201 2018 17.3 0 64.5 48.9 206.3 172.1 109.6 183.7 245.2 55.3 17.9 4.3 

73 432201 2019 0 7.5 26.6 49.8 147.2 101.9 227.1 326.5 285.4 19.1 3.1 0 

74 432201 2020 0.1 0 1.9 90 118.9 242 158.3 209.3 394 172.3 4.4 0 

75 432201 2021 0 46.7 32.9 114.1 240.6 202.4 140.9 143.8 253.9 318.4 33.4 0 

76 432201 2022 1 71.5 187.2 142.6 270.7 200.6 239.7 328.1 676.3 94.9 43.6 0 

77 432201 2023 16.4 32.3 3.2 74.7 127.5 88.8 22.5 152.1 95.6 253.4 9.4 1.6 

78 432301 2013 7.3 28.2 2.6 27.8 208 173 231 134.1 355.7 85.8 4.4 2.5 

79 432301 2014 0 2 5 76.2 115.7 121.9 286.5 240 220.1 201.9 90.1 0 

80 432301 2015 1.8 7.4 53 30.5 178.6 50.1 262.7 216.8 289.7 119.9 30.9 0.1 

81 432301 2016 10.4 0 0 4.5 201 180.6 309.6 185.8 287.1 94.5 48 0 

82 432301 2017 2.8 1.6 108.4 17.8 299.9 195.7 334.2 241.2 153.9 152.9 15 1.4 

83 432301 2018 13.5 0 24.4 87.1 176.7 118 169.2 168.6 240.7 20.9 37 7.1 
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   MONTH (MM) 

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

84 432301 2019 0 15.6 17.4 147.3 162.9 102.5 213.2 356.1 348.7 65.6 1.9 0 

85 432301 2020 0.6 0 6.3 50.6 53.2 238.7 146.5 150.5 281.3 161 4.8 0 

86 432301 2021 0 22.9 11.8 66 214.5 212.6 162.6 166.8 268.7 261.7 16.8 0 

87 432301 2022 0 77.9 121.6 184.8 214.1 144 245.3 305.4 651.5 86.6 44.5 0 

88 432301 2023 0.8 4.7 9.4 95.9 172 241.7 169.4 279 94.3 131.9 0 0 

89 432401 2013 0 0 13.3 113.1 119.3 144.6 170.8 292.1 355.6 63.9 1.6 20.4 

90 432401 2014 0 0.1 27 60.1 67.5 238.2 271 213.1 151.8 51 1.4 1.5 

91 432401 2015 0 9.5 68.8 30.6 80.7 75.1 222 204.2 217.3 133.4 20.5 0 

92 432401 2016 27.2 4.2 0 93.7 156.3 266.4 265.4 108.4 256.8 141.1 41.7 0 

93 432401 2017 0 4.5 53.7 81.2 194.7 110.3 358.1 164.6 189.8 74.9 12.2 0.2 

94 432401 2018 1.5 0.1 46.1 56.8 232 154.9 232.6 127.7 185.5 0 7 0 

95 432401 2019 0 2.1 22.2 113.1 172.6 37.4 130.7 371.3 304.5 32.3 1.8 0 

96 432401 2020 0.1 0 19.2 38.3 49.9 83.7 156.6 262 252 179.1 0 0 

97 432401 2021 0 30.6 0 96.7 189.7 165.5 132 96.9 372.7 124.1 0 0 

98 432401 2022 4.6 23.5 48.9 75.4 76.5 91.4 199.9 144.2 351.1 138.6 37.1 0 

99 432401 2023 1.1 7.4 11.9 67 169 299.6 102.7 202.3 129.7 107.6 17.6 1.4 

100 436201 2013 35.8 0 16.2 76.2 242.9 123.4 175.5 260 302.5 111.2 3.1 0.9 

101 436201 2014 0 0.2 17.1 61.5 95.2 212.3 335.4 252.7 140.5 85.1 6.2 0 

102 436201 2015 0 21.3 5.1 41.5 121.1 43.3 312.3 161.7 208.6 100.2 14.2 0 

103 436201 2016 14.4 0.7 0 62.7 197.4 151.8 177.2 195.4 382 105.6 83.5 0 

104 436201 2017 37 26.3 89.9 34.6 373.5 254.2 338.5 357.9 266.3 76.3 17 2.3 

105 436201 2018 0 0 39.8 65.8 156.7 47.8 136.9 111.6 214 35 21.8 2.2 

106 436201 2019 0 0 30.1 115.1 293.3 170.2 126.9 217.3 218.8 87.2 2.8 0 

107 436201 2020 5.2 0 34.9 46 50.3 212.8 157.9 164.1 307.8 282.8 4.2 0 

108 436201 2021 0 7.8 5.2 69.7 145.5 130.9 185 167.5 283.6 216.5 3.7 0 

109 436201 2022 7.5 25 84.5 202.7 234.1 142.6 475.6 349.4 417.8 128.5 41.3 0 

110 436201 2023 5.4 0 3.2 21.6 56.2 114.8 233.4 152 148 100.9 0 0.9 

111 436401 2013 0 3.2 11.1 104.2 136.7 72 225.1 142.7 253.8 290.7 19.3 0.2 

112 436401 2014 0 3.4 20 181 174.8 70.4 130.4 315.9 209.4 209.5 6 9.7 

113 436401 2015 2.9 10.6 45.7 102.5 58.6 82.3 151.8 206.6 324.6 177.8 23.2 0.8 

114 436401 2016 15.2 0 8.4 74 149.8 184.9 311.1 196.2 199.3 122 38.1 0.2 

115 436401 2017 1.8 1.7 104.6 67.4 218.5 98.9 238.3 268.6 141.4 80.1 23.9 7.9 

116 436401 2018 4.1 6.5 70.3 92 159.2 64.7 44.8 89.8 180.1 27.8 12.8 0.8 

117 436401 2019 0 3.8 0.9 75.9 162.9 50 65.4 157.2 222.6 86.3 4.3 0 

118 436401 2020 0 2.4 72.8 96.5 165 100.3 337 224.6 308.1 295.6 21.2 0.2 

119 436401 2021 0 22.8 18.4 334.4 130 69.4 234.4 105 359.6 282.8 7.4 0 

120 436401 2022 0.8 71.6 13.6 180 384.4 141.8 419.2 212.8 392.1 141.4 94.4 0 

121 436401 2023 8.7 1 10.4  62.6 133.8 250.6 132.6 156.2 215.9 103 11.6 0.5 
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APPENDIX C 

The monthly maximum temperature data from Northeast of Thailand 

   MONTH (CELSIUS) 

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1 407301 2013 35 39.3 39.5 41 37.5 37.2 35.5 35 35 34.4 35 34 

2 407301 2014 33.9 35.8 39.8 39.5 39.8 38.2 35 35.8 35.4 35 35.9 35.2 

3 407301 2015 34.9 37.6 38.4 42.4 39.8 40 38.5 36.5 35.5 35 35.6 36.5 

4 407301 2016 35.8 37.5 40.1 42.3 40.5 37 35.5 35.2 34.8 35.5 36 35 

5 407301 2017 34.4 38.2 39.5 40.3 38 36 33.8 36.3 35.9 34.1 36.5 34.4 

6 407301 2018 36 37.4 39 40.5 37.5 35.1 35 34 35.5 35.8 35.2 36 

7 407301 2019 35.5 38 40.3 40.7 40.9 38 36.2 34.6 34.2 36 34.5 35.3 

8 407301 2020 36.8 38 40.7 40.7 40.3 37 36 35.6 35 33.7 35.4 34.8 

9 407301 2021 35.7 38.6 40.4 40.3 39.1 38.7 36.8 35.6 35.1 34.7 35.5 34 

10 407301 2022 36 36.7 39 38.2 35.6 37.2 35.8 35.4 35.5 34 36.7 34.5 

11 407301 2023 33.9 36.9 40.2 40.8 41.5 36.6 35.6 36 34.4 35.7 33.8 34 

12 407501 2013 34.6 38.3 39.4 40.6 38.3 37.4 35.8 36.5 34.3 34.1 34.9 33.8 

13 407501 2014 34.2 35.9 39.8 39.4 39 38.6 35.2 35.8 35.6 34.5 35.2 35.2 

14 407501 2015 35.3 36.7 37.5 41.5 41.7 39.8 38 36.3 35.7 35.3 35.4 35.7 

15 407501 2016 35.3 37.6 40.2 42.6 40.5 37 35.7 35.5 34.3 35.2 35.3 36.7 

16 407501 2017 34.9 38.1 39.2 39.7 38 36 34.5 36.1 35.7 34.3 35.8 34.4 

17 407501 2018 36.7 37.4 38.8 39.1 37.4 35.4 35.7 34.1 35.1 35.9 35.1 36.2 

18 407501 2019 35.5 38.4 39.8 40.6 40.1 37.7 36.4 35 33.8 35.6 34.8 34.8 

19 407501 2020 36.7 37.1 40.4 40.4 39.4 37.7 36.3 35.5 34.7 33.7 35.2 34.4 

20 407501 2021 35.1 38.2 39.8 38.9 39.1 39 36.6 36.2 34.8 33.9 35.3 33.1 

21 407501 2022 35.7 36.1 38.5 38.4 36.3 37 35.6 35.1 35 34.4 35.5 34.2 

22 407501 2023 34.5 37.1 40.2 41.2 40.7 36.5 36.5 35.3 33.9 34.5 34 34 

23 409301 2013 34.5 37.8 39.6 39.7 38.4 36.5 35.5 33.5 34.3 33.2 34.9 32.3 

24 409301 2014 33.5 35.5 39.3 39.5 40.2 38 34.8 35.1 34.5 34 35.4 34 

25 409301 2015 34.5 36.6 37.8 42.1 39.2 40.5 38.5 35.5 35.4 34.6 35.2 35.2 

26 409301 2016 35.1 37 40.5 42.3 40 37.5 35.3 34.8 33.6 34.4 34.5 34.4 

27 409301 2017 34 37.5 39 39.8 37.9 35 33.6 35.5 35 33.1 35.8 33.6 

28 409301 2018 35.6 37 37.5 40.3 37.6 35.5 34.8 33.1 35.4 35.3 34 35 

29 409301 2019 34.5 38 39.3 40.5 39.9 38.1 37.6 34.8 34.6 36 34.6 35 

30 409301 2020 36.3 37.3 40.5 40.1 40.5 37.6 36.4 35.3 34.8 33.8 35 34 

31 409301 2021 34.6 38.4 39.8 40 38.3 38.5 38 36.4 33.9 34.2 34.6 32.5 

32 409301 2022 35.3 36.2 39.3 38.2 36 36.5 35 34.5 34 33 34.9 33.8 

33 409301 2023 34.2 37.9 40.1 40.1 41 37 35.5 35.8 35 34.1 32.9 33 

34 431201 2013 34.5 37.9 40.6 41 39.8 37.2 37 35.2 31 34.6 34.3 31.7 

35 431201 2014 33.6 36.4 39.6 39.5 38.2 38.3 38.4 37.7 35.8 34.6 35.7 35.9 

36 431201 2015 35.3 37.5 38.4 41.5 39.3 40.3 38.2 37.2 35.5 34.8 36.3 35.8 

37 431201 2016 36.4 37.3 41.5 43.2 41.8 38.2 37.3 36.5 35 34.8 33.8 33.6 

38 431201 2017 34 38.4 39.6 39.1 38.5 36.2 35 35.9 35.4 35.3 35.5 34.9 

39 431201 2018 36.6 37.6 38.2 39.4 37.1 36.1 35.9 35.1 36.2 36.1 33.2 35.9 

40 431201 2019 34.2 38.8 40.3 41.9 41 39.7 38.5 36.7 34.6 35.8 35.1 35.6 

41 431201 2020 37 38.4 41.2 41.1 40.1 38.8 37.7 36.8 35.7 33.8 34.6 35 
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   MONTH (CELSIUS) 

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

42 431201 2021 34.8 38.7 40.1 39.2 38.2 38.7 39.7 38.3 34.9 35.1 35 32.3 

43 431201 2022 36.6 35.8 38.8 38.8 36 36.5 36.4 35.5 35 33.5 34.7 31.3 

44 431201 2023 35.1 36.8 40 41.2 41.6 38.7 37.4 39.1 34.8 34.5 30.7 30 

45 431301 2013 34 35.9 37.2 38.5 36.7 33.2 32.9 32.1 33 32 32 30.4 

46 431301 2014 33 34.1 36 36.4 35.6 35 35 33 33.1 32.6 33 32.1 

47 431301 2015 33.8 35.5 36.3 38.1 36 37.7 35.3 34.6 32.9 32.7 33 34.5 

48 431301 2016 32.9 35.2 37.9 38.9 39 36.5 33.5 33 32.4 32.1 32.6 32.6 

49 431301 2017 33.1 35.2 36.6 36.7 35.6 33.4 32.2 34 33.1 32 32.8 33.1 

50 431301 2018 33 35.6 35.2 35.6 34.2 32.8 32.1 31.2 33.1 33.3 32.9 33.1 

51 431301 2019 33.3 35.9 37.8 38 36.7 35.1 34 31.7 32.5 34.9 33.9 34 

52 431301 2020 35.5 35.1 38.8 38 36.1 35.8 34.5 34.4 33.4 31.5 32.9 32.9 

53 431301 2021 32.9 36.1 36.4 37.1 34.9 35.9 36 33.2 33.1 32 32.4 31.6 

54 431301 2022 33.9 34.2 36 36.2 33.7 33.6 33.1 33 32.5 31.3 32.3 30 

55 431301 2023 32.8 34.6 36.7 38.6 36 35.4 35.6 34.5 32.7 32.1 31 31 

56 431401 2014 34.5 36.2 39 39.2 38.5 38.5 37.7 36.2 34.8 34.6 34.7 33.4 

57 431401 2013 35.6 37.6 40 40 38.5 36.8 36.2 35.2 34.7 33.6 35.3 32 

58 431401 2015 34.7 37.8 39 40.7 39 39 37.9 36.9 35.6 34.6 35.1 35.9 

59 431401 2016 36.1 37 41.2 42.5 40.7 37.6 37 36.9 35.5 35 34.9 34.4 

60 431401 2017 34.5 38 39.6 39 39 35.8 35.6 36 36.2 34.2 35.1 34.5 

61 431401 2018 35.7 37.7 38.1 39 37 36 35.7 35.2 36 36.5 33.5 35.9 

62 431401 2019 34.5 38.7 40.1 40.6 40.3 38 37.5 36 35.2 35.7 35.2 35.7 

63 431401 2020 37.2 37.9 40.6 40.8 39 38.8 37 36 35.7 34.3 35.7 34.7 

64 431401 2021 34.6 38 39.5 39.7 38.2 38.8 38 36.8 35 35.3 35.3 33.2 

65 431401 2022 35.7 35.3 38.2 38.8 35.7 37.5 36 35.2 34.8 33.4 34.3 32.2 

66 431401 2023 34.8 36.6 39.7 40.2 40.2 37.4 37.2 37.2 35.4 34.5 32.5 31 

67 432201 2014 33.9 35.5 39.2 38.7 37.8 37.4 35.7 35.4 34 33.6 34.6 33.2 

68 432201 2015 34.6 36.6 37.5 41.3 38.4 39.2 37.9 35.7 34.8 34 35.3 35.9 

69 432201 2016 35.4 37 40 42 40.8 37.8 35.8 35.5 34 35.1 34.3 33.8 

70 432201 2017 34.4 37.9 39.1 38.8 39 35.6 34.5 35.4 35.5 33.8 36.2 34 

71 432201 2018 35.4 37.3 38.8 39.2 38.8 35.7 35.1 34.2 35.9 35.7 34 35.6 

72 432201 2019 34.5 38.2 39.7 40.8 40.7 38 37.4 35.9 34.1 34.8 35.5 35.1 

73 432201 2020 36.4 37.4 40.1 40.5 41.5 37.5 36.5 35.6 35.5 33.5 34.8 34.3 

74 432201 2021 34.9 37.6 39.5 39.2 37.8 37.5 37.4 36 34.5 35.5 34.8 32.3 

75 432201 2022 35.8 35.7 38.4 38.5 35.3 36.2 35.7 34.8 34.3 33.1 35 33.7 

76 432201 2023 34.1 37.2 40 40.6 41 37 36 35.7 35 34.8 33 32 

77 432201 2013 35 37.5 39.7 40 38.6 36.7 35.4 33.8 33.9 33.3 34 33.3 

78 432301 2014 33 36.2 38.5 38.5 38.5 37.8 35.5 35.5 35 33.8 34.2 33.2 

79 432301 2015 34.6 36.2 37.6 41.6 38.5 38.8 38.6 35.7 35.5 34.7 35.3 35.7 

80 432301 2016 35.3 37.4 41.3 43.3 41.2 37.8 36.2 36.2 34.7 34.8 34.5 34.1 

81 432301 2017 34.2 37.8 38.8 39.7 39.1 36.2 33.9 35.2 36.3 33.6 35.6 34.1 

82 432301 2018 35.5 37.3 39.4 40.7 37.7 35.8 35.3 34.5 35.7 35.8 34.7 35.8 

83 432301 2019 35.3 38.6 41 39.9 40.7 38.5 37.7 36 34 35.6 35 34.9 

84 432301 2020 36.5 38 40.8 41 42 39 37.6 36.4 36.5 34 35.2 35 
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   MONTH (CELSIUS) 

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

85 432301 2021 35.2 38.5 40.2 40.3 39.1 38 37.2 36.7 34.5 36.2 35 33 

86 432301 2022 36.3 36.2 38.7 39.2 36.7 36.5 36 35 34.5 33.5 35 33.6 

87 432301 2023 34.5 37 40 40.5 41.4 37.5 36.1 36.3 36 34.8 33.2 33 

88 432301 2013 35.2 37.7 40.8 41.5 39.5 36.7 35.8 34.2 34.1 33.8 34.5 33 

89 432401 2014 33.5 36.7 38.9 38.7 38.7 38 35.8 35.1 35 34 34.5 33.8 

90 432401 2015 34.5 37.3 37.6 41.5 39 39.1 39.2 37.2 35.5 33.5 35.2 35.8 

91 432401 2016 35 36.3 40.3 42 39.8 37 35.8 34.8 34.5 33.8 34.2 33.9 

92 432401 2017 34 36.4 37.2 38.6 37.3 35.1 33.9 35.4 34.5 33.8 34.2 33.2 

93 432401 2018 34.5 36.4 38.4 38.6 37 35.6 35 34.3 35.6 35.6 33.5 35.2 

94 432401 2019 34.3 37.8 39.5 40.3 40.2 38 38 36 34 34.6 34.6 34 

95 432401 2020 36 37.2 40 40.2 41.5 37.2 36.1 36.2 35.6 34.1 34.8 34 

96 432401 2021 34.8 37 39.2 39.5 38 37 37 36.3 35 33.8 34 32 

97 432401 2022 35.1 35 37.7 37.8 34.5 36 35.2 34 34.2 32.5 34.4 32.5 

98 432401 2023 34 37 39.8 40 40.5 37 36 35.5 34.5 34.5 31.8 33 

99 432401 2013 34.9 37.9 40.6 41.8 39.4 36.2 36.3 38.3 34.4 33.4 33.8 31.5 

100 436201 2014 33.5 37.3 40 40.3 39.9 39 36 36 34.2 33.8 35 33.3 

101 436201 2015 35 37 39 42.5 39.7 40.3 40.2 35.5 35 33.5 35.5 36 

102 436201 2016 35.8 37 41.5 43.2 41 37.5 36 36.3 34 34 35.5 33.5 

103 436201 2017 32.7 37 39.5 39.5 38 35.5 33.7 34.5 34.5 33 35 34 

104 436201 2018 35 36.8 39 39.3 37 35.8 35.8 33.7 35.1 35 33.8 35.9 

105 436201 2019 34.5 38.7 39.8 40.2 39.7 38.1 38.5 35.8 32.9 36.9 35 34.2 

106 436201 2020 36 37 39.5 39.6 40.5 37.4 36.4 35 35.1 32.5 33.9 33.9 

107 436201 2021 34.4 38.3 39.6 39.6 37.5 38 37.3 35.9 34.6 34.2 34.3 31.7 

108 436201 2022 35.7 35.7 38.7 38.2 35.4 36 34.9 33.5 34 33.3 33.5 32.7 

109 436201 2023 32.6 36.8 39.8 40.2 41.4 37.6 35.5 36.3 34.3 34.7 32.1 32 

110 436201 2013 34.7 38.2 41.2 41.3 40.2 36.7 36 35 34.8 35.5 34 31.9 

111 436401 2014 34.5 37 39.4 40.1 38.1 38 37 36 34.9 34.1 34.1 33.5 

112 436401 2015 35 37.1 39.2 41.8 39.3 39.8 39.3 36.6 35.5 33.5 34.6 35.4 

113 436401 2016 36.2 37.2 41.2 43 40.4 37.8 36.4 36.4 34.6 34.4 34.6 33.8 

114 436401 2017 33.8 37.5 39.2 39 38.2 36 35.1 35.9 35.5 34 35.3 33.8 

115 436401 2018 35.6 37.5 38.3 39.2 37.5 36.7 36.2 35.5 36.1 35.9 34.7 36.4 

116 436401 2019 34.7 38.6 39.7 40.8 40.7 38.5 38.8 36.9 34.8 35.8 35.5 35.6 

117 436401 2020 37.6 38 41 41.6 40.5 37.5 36.6 35.6 35.5 33.8 35.2 34.9 

118 436401 2021 35.1 38.6 39.6 40 37.5 37.9 37.7 36.5 34.9 35.1 34.8 32.5 

119 436401 2022 35 35.4 38.5 39 36.1 36.4 35.6 34.6 34.5 32.8 35 32.6 

120 436401 2023 33.7 37 39.7 40.2 40.2 37.9 37.4 37 35.4 34.7 32.3 31 

121 436401 2013 35.4 38 41.3 41.6 39.1 37.2 36.5 34.7 34.6 33.2 33.8 31.6 
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APPENDIX D 

The monthly minimum temperature data from Northeast of Thailand 

   MONTH (CELSIUS) 

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

1 407301 2013 14.6 19 18.2 22.4 22.5 21.8 22.8 23.4 22.5 20 17.3 12.2 

2 407301 2014 11.5 14.4 19 21.2 23 22.5 22.5 23.1 21.7 21.1 19 13.6 

3 407301 2015 11.5 14 22.1 18.8 23.2 23 22.7 23.5 21.4 20.6 20.5 15.5 

4 407301 2016 13.4 11.5 15.8 23.6 23.4 23.3 22 23.8 22.8 22.5 18.4 17 

5 407301 2017 15.5 13.2 17 19.3 22.8 23.3 23.3 23 23.2 21.3 17.5 13.1 

6 407301 2018 13.5 11.6 16 17 22.2 22.5 23.4 23.2 22 19.5 17.8 16.7 

7 407301 2019 14.8 18.3 20.5 24.5 22.7 24 22.5 22.2 22 20.5 17.7 13.7 

8 407301 2020 14.5 16 19 20.7 23 22.7 22.2 22.6 23 19 17.9 14 

9 407301 2021 9.5 13.8 18.9 22.6 22.5 22.9 21.7 22 23 20 18.2 15.5 

10 407301 2022 16.5 14.7 19.8 17.6 18.7 22.4 22.7 22.3 22.4 18.5 15.8 13.8 

11 407301 2023 13 15.2 17.5 23.4 23.2 22.8 23.1 22.7 22.7 22.2 22.2 22 

12 407501 2013 14.4 19.5 19 23.5 23 22.7 22.9 23.4 22.8 20 17.6 12.4 

13 407501 2014 12.1 15.5 19.8 21.9 23.6 22.8 23.2 23.5 22.6 21.9 19.4 14.2 

14 407501 2015 12.6 15.1 22.8 20 24.2 23.7 22.8 23.5 21.4 21.5 20.6 15.1 

15 407501 2016 13 11.5 16.3 23.8 23.8 23 22.8 23.5 22.9 23.2 18.6 16.9 

16 407501 2017 17.3 14.8 17.7 19.5 23 23.5 23.5 23 23.6 20.1 17.7 12.2 

17 407501 2018 14.1 11.8 16.4 17.2 23 22.4 23.6 23.5 22.4 19.6 18.6 16.9 

18 407501 2019 16.4 19.5 22.6 23.4 22.9 24.6 22.7 22.8 22.8 21 18.8 13.7 

19 407501 2020 14.7 16.5 21.9 20.8 23.5 23.8 23 23.2 23.3 19.5 18 14.2 

20 407501 2021 10.5 14.6 19.3 23.4 22.7 22.9 22 23 23 20.1 18.4 15.6 

21 407501 2022 17.2 14.5 20.5 18 18.8 23 23.2 22.6 22.8 18 16.8 14.2 

22 407501 2023 13.6 15.8 18.2 23.9 23.8 23.7 23.5 23.3 23.1 22.9 23 22 

23 409301 2013 14.9 19 18.9 22.9 23.5 23 22.9 23.7 23 21 17.7 12.6 

24 409301 2014 11.9 14 20.2 22.8 24 23 23.2 23.2 23.4 22.3 19.4 14.3 

25 409301 2015 12.2 15.2 22.5 20.1 24.5 24 23.2 22.9 22 21.7 21.1 15.9 

26 409301 2016 12 11.4 16.6 24.6 23.1 23.6 22.6 23.8 23 22.8 18.7 16.9 

27 409301 2017 15.2 15.2 17.5 19.1 23.5 23.8 23.6 22.5 23 20.2 17.5 12.5 

28 409301 2018 13.8 12.1 16.5 17.2 23.8 22.6 23.4 22.9 22.5 21.9 18.6 16.6 

29 409301 2019 15.8 19.2 21.5 21.7 22.9 23.8 22.7 22 22.5 20 16.7 12.8 

30 409301 2020 14.7 16 19.5 21.4 22.8 23.2 22.8 22.8 23 19.5 19.1 14 

31 409301 2021 11.2 15 19.2 23.8 24.2 23.8 23 23.5 23.1 20.8 19.2 16.1 

32 409301 2022 17.7 14.8 21.1 17.5 19.3 23 23.1 23 22.5 19.1 18.1 14.8 

33 409301 2023 13.8 16 18.6 23.5 23.5 23.3 24 23 24 23.5 23.2 23 

34 431201 2013 16.5 20 20.3 23.5 23.3 24.4 23 22.8 24.6 21.5 18.6 12.2 

35 431201 2014 11.2 16.9 21.7 22.8 23.5 24.3 24 23.7 23.7 22.7 20.1 15.3 

36 431201 2015 13.6 16.7 22.7 21.7 24.8 24.5 22.6 23.6 23.3 21.4 21.4 17.1 

37 431201 2016 12 12.6 18.2 24.3 22.8 22.8 23.7 23.6 23 23.7 20 16.6 

38 431201 2017 16.8 16.3 19.3 20.8 23.9 23.4 23.2 23.2 22.7 20.5 18.5 12.8 

39 431201 2018 14.9 13.5 19.7 17.8 23.7 24 23.6 23.4 23 20.3 18.1 17.8 

40 431201 2019 17.2 20.1 20.2 23.4 23.6 23.8 22.5 23.3 22.2 20.7 18.4 13.5 
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   MONTH (CELSIUS) 

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

41 431201 2020 17.4 17.5 22.9 23.1 23.2 23.1 24 23.4 23.3 19.2 19 14.4 

42 431201 2021 12 16.7 20.6 23.1 22.3 24.6 23.5 23.2 22.6 20.5 19.3 16.3 

43 431201 2022 17.7 16.2 21.9 16 18.9 22.8 23.7 22.7 22.8 18.4 17.5 15.5 

44 431201 2023 14.1 16.2 19.6 23.8 23.5 24.2 24.2 24.5 24.3 23 23.9 22.8 

45 431301 2013 14.4 18.5 19.2 20.5 22.7 21.4 22.4 21.6 21 19.4 18.1 11.5 

46 431301 2014 10 15.7 18.4 21.7 21.9 23 23.4 21.6 21.5 19.9 18.4 15 

47 431301 2015 13.6 16 20.4 20.5 22.3 22.7 21.5 22.4 21.5 19.5 20.6 16.3 

48 431301 2016 10.6 10.6 17.5 21.7 22.2 22.7 22.4 21.9 22.1 21.2 19 15.6 

49 431301 2017 16.9 15.5 18 20.5 22.3 21.3 22 22.1 21.5 21 17.5 12 

50 431301 2018 14 13.5 17.8 19.1 21.6 21.8 22.6 21.8 20.7 21.1 17 17.5 

51 431301 2019 15.5 18.4 0 21.5 22.4 22.6 21 0 20.3 19.3 15.9 12.7 

52 431301 2020 17.4 17 20.2 21.7 21.6 22.5 21.4 22 21.4 17.5 18.7 14.8 

53 431301 2021 10.5 16 19 21.5 21.8 21.6 21.5 21.5 21.3 19.9 19 13.4 

54 431301 2022 16.4 16.8 20 14.8 18 21.4 21.6 21.1 21.5 17.5 15.7 14.1 

55 431301 2023 12.6 14.5 16.6 21 22.1 22.6 22.3 22.2 23.1 21 22.6 21 

56 431401 2013 15.4 19.4 19.6 22.2 23.5 23.3 23.5 22.9 22.5 21 17.5 11.5 

57 431401 2014 10.6 15.4 21.5 22.2 24.3 24.5 24 23.2 23.3 22 18.7 13.9 

58 431401 2015 13 15.5 22.5 20.1 24.5 23.5 23 23.5 22.9 20.7 20.6 16 

59 431401 2016 11.8 11.3 16.5 23.5 22.7 22.1 23.5 24.3 23.2 22.5 19.3 15.7 

60 431401 2017 15.7 15.4 18.3 20.5 23.1 23.5 23 23.7 23.4 20 17.6 10.9 

61 431401 2018 13.7 12.7 19.7 17.7 23.5 23.7 23.5 23.4 22.7 22 17.5 17.2 

62 431401 2019 15.4 18.9 19.7 23.4 23.6 23.4 22.5 24 22 19.6 17 12.3 

63 431401 2020 16.5 16.5 22.6 23 22.8 23.5 23.5 23 23.1 19.5 17.7 13.5 

64 431401 2021 10.8 16.7 19.7 22.9 22.7 23.9 23.4 23.5 22.2 20 18.1 14.8 

65 431401 2022 16.9 15.7 21.7 15.5 18.2 22.6 23.3 23 22.4 18.5 16.2 14.2 

66 431401 2023 13.5 16.1 17 23.7 23.5 24 24 24 23.5 22.7 22.7 21 

67 432201 2013 15 18.7 20.3 23 24 22.6 23.4 22.9 22.8 20.2 17.1 12 

68 432201 2014 11.7 15.6 20.7 21.9 23.5 23 23.5 23 23 21.7 18.7 14 

69 432201 2015 12.8 15.5 22.3 19.8 21.5 22.6 21.9 21.2 20.6 19 19 13.6 

70 432201 2016 9.7 8 16.5 24.2 23.5 23.5 23.6 23.5 23.4 23.1 18.6 15.5 

71 432201 2017 15.9 14.8 18.7 20 21.7 23.3 22.5 23 22.3 19.9 17 11.5 

72 432201 2018 13 11.8 16.9 17.1 23.5 24 23.6 23.6 22.9 19.6 18.3 15.9 

73 432201 2019 14.5 19 22 22.7 22.6 22.8 22.2 22.8 22 19.3 17.9 11.6 

74 432201 2020 14.5 16 21.4 20 21.6 21.3 21.3 21.5 21 17.1 16.3 11.1 

75 432201 2021 10.9 16.5 18.8 23 23.1 23 23.2 23.3 22.8 19.9 17.6 14.7 

76 432201 2022 17 14.6 21.9 15.6 18.3 23 23 22.3 22.2 17.7 16.4 13.8 

77 432201 2023 12.7 15.8 18 22.8 23.4 23.4 23.8 22.3 22.8 22.3 22 21 

78 432301 2013 14 18.5 18.7 23.2 23.8 22.7 23.7 23.2 23 19.8 16.8 10.9 

79 432301 2014 10 12.8 20.2 21.5 23.2 23.5 23.2 23.2 22.8 21.3 18.2 13.7 

80 432301 2015 11.5 15 22 20 23.2 23 22.5 22.5 21.9 18.4 18.5 13 

81 432301 2016 9.9 9.5 15 23.2 23.4 23 23 23 23 22.9 18 14.5 

82 432301 2017 14.6 14.1 17.3 19.5 22 23.5 22.5 21.6 23 19.2 16 10.3 

83 432301 2018 12.5 11.2 16.4 17 23 23.5 23.4 23.2 22.5 20.5 16 15.7 
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   MONTH (CELSIUS) 

NO STATION YEAR JAN FEB MAR APR MAY JUN JUL AUG SEP OCT NOV DEC 

84 432301 2019 14.2 17.5 15 22 23.5 23.5 22.3 23 21.5 18.8 16.5 10.7 

85 432301 2020 14 15 19.5 20.4 21.5 22.5 21.6 21.8 21.4 16.5 15 10.8 

86 432301 2021 9.5 14 18.4 22.9 22.5 22 22.2 22 21.4 18.3 16.2 13.5 

87 432301 2022 15.6 14.5 20.6 15.5 18.5 23.2 22.7 22.9 22.2 19.1 16 13.5 

88 432301 2023 12.5 15.2 17.2 23 23 23.6 23.8 23 23.4 22.5 22.1 21.5 

89 432401 2013 15 18.9 20 22.9 23.4 23.2 22.9 22.4 22.5 20 17.2 12.2 

90 432401 2014 10.7 14.8 20 22 23.7 23 22.1 23.1 23.6 21.5 18.3 13.3 

91 432401 2015 12 15.1 22.2 17.7 23 23.7 22.7 22.2 22.3 20 19.2 15 

92 432401 2016 11 10.8 16.2 21.6 22 23 23.4 24 24 24 18.5 16.1 

93 432401 2017 16.5 14.1 17.2 20 23 24.2 23 23.8 23.8 22.2 17.9 10.7 

94 432401 2018 13.2 11.7 16.8 17.6 23.8 24.5 23.8 24 23.4 21 18.3 17.9 

95 432401 2019 15.5 19 23.2 23.4 23.8 24.5 23.5 22.5 22 22.1 18.5 12.6 

96 432401 2020 14.8 16.2 21 20.3 23.5 23.2 23.2 22.3 23.5 18.1 17.8 13 

97 432401 2021 10.5 16 20 23.5 22 23.2 22 22 22 18.5 18.5 14.5 

98 432401 2022 17 14.3 19.8 15 18.5 24 24 24 23 18.5 18 13 

99 432401 2023 12.7 15.5 18.4 23.5 24 24.4 23 23 23.6 22.8 23.9 22.5 

100 436201 2013 13 17.7 20 22.4 23.5 23.1 22.9 22.4 16.7 18.7 17 10.1 

101 436201 2014 9 13 18 22 22.5 23 23 23 22 20.4 17 12.9 

102 436201 2015 11.4 14 21.3 17.2 22 21.8 18.6 19.6 21 20 18.5 14.4 

103 436201 2016 9.4 8.5 13.7 21 21.7 21 20 22 21 22 17.8 13.5 

104 436201 2017 15 13 16.8 19 22.5 23.2 22 23 21.7 18.5 16 9.3 

105 436201 2018 12 11.3 16.4 16 22.5 23.3 23.3 23 21.7 20.9 17.2 15.7 

106 436201 2019 14.6 18.1 16.6 22 22.3 22.7 23.1 22.6 21.2 18.9 17.5 10.8 

107 436201 2020 13.4 15.8 21.8 20.7 22.3 23.3 23.4 23.1 23.1 19.2 17.1 12.6 

108 436201 2021 9.4 15.1 18.5 22.7 20.6 22.9 23 22.8 22.9 20.1 17.4 14 

109 436201 2022 16.2 14.2 21 15.4 18 23.6 22.2 22.2 22.5 18.2 17.7 13 

110 436201 2023 11.9 15.2 17.6 23 22.3 22.8 23.5 23 23.3 22.1 21.8 22 

111 436401 2013 14.2 18.7 19.5 22.8 22.7 22.6 23 22.4 22.3 20.9 17.5 11.4 

112 436401 2014 10.7 14.8 21.4 21.7 22.5 22.8 23 23.5 23.2 22.3 18.7 13.7 

113 436401 2015 12.2 14.7 22.7 19.9 24.3 23.2 22.3 23 21 20.4 19.7 15.3 

114 436401 2016 11.5 11 15.8 21.5 22.3 22.3 22.1 23.5 23.3 22.8 18 15 

115 436401 2017 15 14.5 16.3 19.8 22.4 23.5 22.6 23 22.2 18.8 16.7 11.2 

116 436401 2018 13.7 11.9 18.3 17.8 22.1 23.8 23.8 23.4 22.3 19.4 17.2 16.5 

117 436401 2019 15.5 18.7 23.5 23 22.2 24.4 22.1 23.8 22.3 20.6 17.6 12.3 

118 436401 2020 16 16.2 22.3 22.3 22.8 23.8 22.3 22.8 22.9 19 17.5 13.5 

119 436401 2021 10.6 15.2 19.6 22.3 22.5 23.7 23.6 22.2 23.3 20.3 18.1 15.1 

120 436401 2022 16.1 15.6 20.5 15.5 18.2 23.5 23.7 22.7 22.1 18 15.9 13.2 

121 436401 2023 13.3 16 18.4 23.5 23.5 23.7 23.7 23.4 23.5 22.9 22.8 21.4 
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